Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T02:52:41.114Z Has data issue: false hasContentIssue false

Role of fractal features in the structure-property relationships of carbon black filled polymers

Published online by Cambridge University Press:  21 March 2011

Françoise Ehrburger-Dolle
Affiliation:
Institut de Chimie des Surfaces et Interfaces, CNRS, BP 2488, 68057 Mulhouse cedex, France Laboratoire de Spectrométrie Physique, CNRS UMR 5588-Université J. Fourier de Grenoble, BP 87, 38402 Saint-Martin d'Héres cedex, France
Manuela Hindermann-Bischoff
Affiliation:
Institut de Chimie des Surfaces et Interfaces, CNRS, BP 2488, 68057 Mulhouse cedex, France
Erik Geissler
Affiliation:
Laboratoire de Spectrométrie Physique, CNRS UMR 5588-Université J. Fourier de Grenoble, BP 87, 38402 Saint-Martin d'Héres cedex, France
Cyrille Rochas
Affiliation:
Laboratoire de Spectrométrie Physique, CNRS UMR 5588-Université J. Fourier de Grenoble, BP 87, 38402 Saint-Martin d'Héres cedex, France
Françoise Bley
Affiliation:
Laboratoire de Thermodynamique et Physico-Chimie Métallurgiques, CNRS UMR 4777, Institut National Polytechnique de Grenoble, B.P. 75, 38402 Saint-Martin d'Héres cedex, France.
Frédéric Livet
Affiliation:
Laboratoire de Thermodynamique et Physico-Chimie Métallurgiques, CNRS UMR 4777, Institut National Polytechnique de Grenoble, B.P. 75, 38402 Saint-Martin d'Héres cedex, France.
Get access

Abstract

Carbon black is widely used as a filler in order to modify the mechanical or the electrical properties of polymers. Such composites display significant non-linear effects. Moreover, examination of the large number of papers devoted to the physical properties of carbon black filled polymers indicates that each composite, even composites apparently consisting of similar matrixes and similar carbon blacks, may behave differently when prepared by different mixing methods. The present work aims to show that these particular behaviors can be related to the fact that carbon blacks used for composites are mass fractals of low dimensionality (Df ˂2) that are able to interpenetrate each other to an extent that depends on the filler-matrix surface interaction and on the volume fraction of filler.

Small-angle X-ray scattering (SAXS) is a convenient method for studying disordered systems at length scales ranging between a few tenths and a few hundred nm. SAXS is therefore particularly advantageous for exploring the morphology of carbon black aggregates and their degree of interpenetration when dispersed in a matrix. Furthermore, the use of an area detector yields two-dimensional images and hence information about anisotropy of the arrangement of scatterers. It is shown that this arrangement profoundly influences the physical properties of the composites.

Analysis of SAXS curves obtained for a rubber grade carbon black (N330) and for composites prepared by dispersing it into polyethylene or EPR will be presented. As an example, the temperature and frequency dependence of the electrical conductivity will be discussed and compared to theoretical models. Finally, the mutual consistency of the electrical and mechanical behavior, theoretical models and information deduced from the scattering curves will be shown.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Probst, N., Black, Carbon, ed. Donnet J.B.; Bansal R.C.; Wang M.-J., (Marcel Dekker, 1993) pp. 271288.Google Scholar
2. Wolff, S. and M.-J. Wang, Carbon Black, ed. Donnet J.B.; Bansal R.C.; Wang M.-J., (Marcel Dekker, 1993) pp. 289355.Google Scholar
3. Medalia, A.I., Rubber Chem. Technol., 47, 411 (1974).Google Scholar
4. Medalia, A.I., J. Colloid Interface Sci., 32, 115 (1970).Google Scholar
5. Thouy, R. and Jullien, R., J. Phys. A: Math. Gen. 27, 2953 (1994).Google Scholar
6. Herd, C.R., McDonald, G.C. and Hess, W.M., Rubber Chem. Technol., 65, 1 (1991).Google Scholar
7. Simon, J.P., Arnaud, S., F., Bley Bérar, J.F., Caillot, B., Comparat, V., Geissler, E., Geyer, A. de, Jeantey, P., Livet, F. and Okuda, H., J. Appl. Cryst., 30, 900 (1997).Google Scholar
8. Livet, F., Bley, F., Mainville, J., Caudron, R., Mochrie, S.G.J., Geissler, E., Dolino, G., Abernathy, D., Grübel, G., and Sutton, M., Nucl. instrum. methods phys. res., Sect. A., 451, 596 (2000).Google Scholar
9. Schmidt, P., Ehrburger-Dolle, F., Pfeifer, P., Rieker, T., Kapoor, Y. and Voss, D., Mater. Res. Symp. Proc., 407, 399 (1996).Google Scholar
10. Rieker, T.P., Misono, S. and Ehrburger-Dolle, F., Langmuir, 15, 914 (1999).Google Scholar
11. Rieker, T.P., Hindermann-Bischoff, M. and Ehrburger-Dolle, F., Langmuir, 16, 5588 (2000).Google Scholar
12. Ehrburger-Dolle, F., Hindermann-Bischoff, M., Livet, F., Bley, F., Rochas, C. and Geissler, E., Langmuir, 17 (2001) in press.Google Scholar
13. Fournier, J., PhD Thesis, Université Claude Bernard Lyon I (1997).Google Scholar
14. Scher, H. and Zallen, R.J., J. Chem. Phys., 53, 3759 (1970).Google Scholar
15. Ehrburger, F. and Lahaye, J., J. Phys. France, 50, 1349 (1989).Google Scholar
16. Ehrburger-Dolle, F., Lahaye, J. and Misono, S., Carbon, 32, 1363 (1994).Google Scholar
17. Hindermann-Bischoff, M., PhD Thesis, Université de Haute-Alsace, Mulhouse (1999).Google Scholar
18. Putten, D. Van Der, Moonen, J.T., Brom, H.B., Zijp, J.C.M. Brokken and M.Michels, A.J., Phys. Rev. Lett., 69, 494 (1992).Google Scholar
19. Mandal, P., Neumann, A., Jansen, A.G.M., Wyder, P. and Deltour, R., Phys. Rev. B, 36, 452 (1997).Google Scholar
20. Planés, J., Wolter, A., Cheguettine, Y. and Pron, A., J. Chim. Phys., 95, 1433 (1998).Google Scholar
21. Cheguettine, Y., Planés, J. and Banka, E., J. Chim. Phys., 95, 1465 (1998).Google Scholar
22. Sheng, Ping and Klafter, J., Phys. Rev. B, 27, 2583 (1983).Google Scholar
23. Andriaanse, L.J., Reedijk, J.A., Teunissen, P.A.A., Brom, H.B., Michels, M.A.J. and Brokken-Zijp, J.C.M., Phys. Rev. Lett., 78, 1755 (1997).Google Scholar
24. Hindermann-Bischoff, M. and Ehrburger-Dolle, F., Carbon (2001), in press.Google Scholar
25. Dyre, J.C., J. Appl. Phys., 64, 2456 (1988).Google Scholar
26. Lee, G.J., Suh, K.D., Im, S.S., Polym. Eng. Sci., 38, 471 (1998).Google Scholar
27. Ben-Chorin, M., Möller, F., Koch, F., Schirmacher, W., Eberhard, M., Phys. Rev. B, 51, 2199 (1995).Google Scholar
28. Oeser, R., Picot, C. and Herz, J., Polymer Motion in Dense Systems, ed. Richter, D. and Springer, T., Springer Proceedings in Physics, 29, (Springer, 1987), p. 104.Google Scholar
29. Witten, T.A., Rubinstein, M. and Colby, R.H., J. Phys. II France, 3, 367 (1993).Google Scholar