Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-02T20:42:43.964Z Has data issue: false hasContentIssue false

Role of Bandgap Grading for the Performance of Microcrystalline Silicon Germanium Solar Cells

Published online by Cambridge University Press:  15 February 2011

M. Krause
Affiliation:
Forschungszentrum Jülich GmbH, ISI-PV, 52425 Jülich, Germany, [email protected]
R. Carius
Affiliation:
Forschungszentrum Jülich GmbH, ISI-PV, 52425 Jülich, Germany, [email protected]
H. Stiebig
Affiliation:
Forschungszentrum Jülich GmbH, ISI-PV, 52425 Jülich, Germany, [email protected]
F. Finger
Affiliation:
Forschungszentrum Jülich GmbH, ISI-PV, 52425 Jülich, Germany, [email protected]
D. Lundszien
Affiliation:
Forschungszentrum Jülich GmbH, ISI-PV, 52425 Jülich, Germany, [email protected]
H. Wagner
Affiliation:
Forschungszentrum Jülich GmbH, ISI-PV, 52425 Jülich, Germany, [email protected]
Get access

Abstract

The optical absorption of microcrystalline silicon germanium alloys (μc-Si1-xGex:H) increases in the near infrared region with increasing germanium content. Therefore, these alloys are promising candidates for the application as intrinsic absorber material in thin film solar cells with tandem and triple structure or IR-detectors. The material properties for a germanium content (x) up to 0.6 and the performance of solar cells based on this material were investigated. Graded bandgap structures are used to optimize the cell performance. For cells with x > 0.3 a continuously graded bandgap in the rear 20 nm of the i-layer (at the i/n interface) results in an enhancement of the open circuit voltage by 40-80 mV compared to an abrupt bandgap discontinuity. When the design of the p/i interface region is changed in a similar way no effect on Voc is observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Refererences

1. Fortmann, C.M., Albright, D.E., Campbell, I.H., Fauchet, P.M., Mat. Res. Soc. Symp. Proc. Vol. 164, 315 (1990).Google Scholar
2. Ganguly, G., Ikeda, T., Nishimiya, T., Saitoh, K., Kondo, M., Matsuda, A., Appl. Phys. Lett. 69, 4224 (1996); G. Ganguly, T. Ikeda, K. Kajiwara, A. Matsuda, Mat. Res. Symp. Proc. Vol. 467, 681 (1997).Google Scholar
3. Carius, R., Fölsch, J., Lundszien, D., Houben, L., Finger, F., Mat. Res. Symp. Proc. (1998), in print.Google Scholar
4. Tzolov, M., Carius, R., unpublished.Google Scholar
5. Weber, J., Alonso, M.I., Phys. Rev. B 40, 5683 (1989).Google Scholar
6. Brya, W.J., Sol. State. Comm. Vol. 12, 253 (1973).Google Scholar
7. Alonso, M.I., Winer, K., Phys. Rev. B 39, 10056 (1989).Google Scholar
8. Braunstein, R., Moore, A.R., Herman, F., Phys. Rev. Vol. 100, No. 3, 695 (1958).Google Scholar