No CrossRef data available.
Published online by Cambridge University Press: 14 February 2012
The roll of lubricants in the cold-drawn process is very important to obtain a good quality on the surface of aluminum and copper wires. The viscosity of a lubricant is closely related to its ability to reduce friction. When the viscosity of a lubricant is too low, the lubricated component will have inadequate protection and will therefore be subject to excessive wear. When the viscosity of the lubricant is too high, the lubricated component will expend additional energy to complete its task. In this work, the rheology behavior of traditional lubricants for the cold drawn of Al and Cu is determined from experimental data of viscosity Vs shear rate. To evaluate the efficiency of each lubricant, the roughness surface of each wire is measured by Atomic Force Microscopy (AFM). In this way a minimum of roughness in wires corresponds to the viscosity required for each cold-drawn process. It is known that different lubricants are used for the cold drawn of Al and Cu. In this work, a new lubricant developed with the aim to be used in both process is characterized by FTIR, rheometer analysis and AFM. Results have indicated that, this new lubricant with a low viscosity that promotes a lower energy process, also decreases the roughness of Al and Cu wires compared with conventional lubricants, i.e.it has an important influence in the quality of the wires surface. This means that this new lubricant could be used during the process of both metals without making important changes, which means low operations costs and flexibility for the manufacturing plant.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.