Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-30T21:23:46.922Z Has data issue: false hasContentIssue false

Reviewing Photo-sensing Devices Using a-SiC Based Materials

Published online by Cambridge University Press:  01 February 2011

Manuela Vieira
Affiliation:
[email protected], ISEL, DEETC, Lisbon, Portugal
Miguel Fernandes
Affiliation:
[email protected], ISEL, Lisbon, Portugal
Paula Louro
Affiliation:
[email protected], ISEL, DEETC, R. Conselheiro Emidio Navarro, 1, Lisbon, 1900, Portugal
Alessandro Fantoni
Affiliation:
[email protected], ISEL, DEETC, R. Conselheiro Emidio Navarro, 1, Lisbon, 1900, Portugal
M. A. Vieira
Affiliation:
[email protected], ISEL, DEETC, R. Conselheiro Emidio Navarro, 1, Lisbon, 1900, Portugal
João Costa
Affiliation:
[email protected], ISEL, DEETC, R. Conselheiro Emidio Navarro, 1, Lisbon, 1900, Portugal
Manuel Barata
Affiliation:
[email protected], ISEL, DEETC, R. Conselheiro Emidio Navarro, 1, Lisbon, 1900, Portugal
Get access

Abstract

In this paper a double pi'n/pin a-SiC:H voltage and optical bias controlled device is presented and it behavior as image and color sensor, optical amplifier and multiplex/demultiplex device discussed. The sensing element structure (single or tandem) and the light source properties (wavelength, intensity and frequency) are correlated with the sensor output characteristics (light-to-dark sensivity, resolution, linearity, bit rate and S/N ratio). Depending on the application, different readout techniques are used. When a low power monochromatic scanner readout the generated carriers the transducer recognize a color pattern projected on it acting as a color and image sensor. Scan speeds up to 104 lines per second are achieved without degradation in the resolution. If the photocurrent generated by different monochromatic pulsed channels is readout directly, the information is multiplexed or demultiplexed. It is possible to decode the information from three simultaneous color channels without bit errors at bit rates per channel higher than 4000bps. Finally, when triggered by appropriated light, it can amplify or suppress the generated photocurrent working as an optical amplifier. An electrical model is presented to support the sensing methodologies. Experimental and simulated results show that the tandem devices act as charge transfer systems. They filter, store, amplify and transport the photogenerated carriers, keeping its memory (color, intensity and frequency) without adding any optical pre-amplifier or optical filter as in the standard p-i-n cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Randel, S., Koonen, A.M.J., Lee, S.C.J., Breyer, F., Larrode, M. Garcia, Yang, J., Ng'Oma, A., Rijckenberg, G.J, and Boom, H.P.A., ECOC 07 (Th 4.1.4). (pp. 14). Berlin, Germany, 2007.Google Scholar
2 Tsai, H.K. and Lee, S.C., IEEE electron device letters, EDL-8, (1987) pp.365367.Google Scholar
3 Cesare, G. de, Irrera, F., Lemmi, F., and Palma, F., IEEE Trans. on Electron Devices, Vol. 42, No. 5, May 1995, pp. 835840.Google Scholar
4 Zhu, A., Coors, S., Schneider, B., Rieve, P., and Bohm, M., IEEE Trans. on Electron Devices, Vol. 45, No. 7, July 1998, pp. 13931398.Google Scholar
5 Topic, M., Stiebig, H., Knipp, D., Smole, F., Furlan, J., and Wagner, H., J. Non Cryst. Solids 266–269 (2000) 11781182.Google Scholar
6 Mulato, M., Lemmi, F., Ho, J., Lau, R., Lu, J. P., and Street, R. A., J. of Appl. Phys., Vol. 90, No. 3 (2001), pp. 15891599.Google Scholar
7 Vieira, M., Fernandes, M., Martins, J., Louro, P., Schwarz, R., and Schubert, M., IEEE Sensor Journal, 1, no. 2 (August, 2001) pp. 158167.Google Scholar
8 Vieira, M., Fernandes, M., Louro, P., Schwarz, R., and Schubert, M., J. Non Cryst. Solids 299–302 (2002) pp.12451249.Google Scholar
9 Vieira, M., Fantoni, A., Fernandes, M., Louro, P., and Rodrigues, I.. Mat. Res. Soc. Symp. Proc 762@2003 A.18.13.Google Scholar
10 Louro, P., Vieira, M., Vygranenko, Yu., Fantoni, A., Fernandes, M., Lavareda, G., and Carvalho, N., Mat. Res. Soc. Symp. Proc., 989 (2007) A12.04.Google Scholar
11 Louro, P., Vieira, M., Vygranenko, Yu., Fernandes, M., Schwarz, R., and Schubert, M., Applied Surface Science 184, 144149 (2001).Google Scholar
12 Vieira, M., Fernandes, M., Louro, P., Fantoni, A., Vygranenko, Y., Lavareda, G., and Carvalho, C. Nunes de, Mat. Res. Soc. Symp. Proc., Vol. 862 (2005) A13.4.Google Scholar
13 Vieira, M., Fantoni, A., Louro, P., Fernandes, M., Schwarz, R., Lavareda, G., and Carvalho, C. N., Vacuum, Vol. 82, Issue 12, 8 August 2008, pp: 15121516.Google Scholar
14 Vieira, M., Louro, P., Fernandes, M., and Fantoni, A., Sensor and Actuators A 114/2-3 (2004), pp. 219223.Google Scholar
15 Vieira, M. A., Vieira, M., Fernandes, M., Fantoni, A., Louro, P., and Barata, M., MRS Proceedings (2009) Vol. 1153, A0803.Google Scholar