Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T18:24:44.914Z Has data issue: false hasContentIssue false

Review of spatial relations between uraninite and coffinite - implications for alteration mechanisms

Published online by Cambridge University Press:  23 March 2012

Lena Z. Evins
Affiliation:
SKB, Blekholmstorget 30, SE-101 24 Stockholm, Sweden ([email protected])
Keld A. Jensen
Affiliation:
NRCWE, Lersø Parkallé 105, DK-2100 København Ø, Denmark ([email protected])
Get access

Abstract

Coffinite (USiO4•nH2O) is a common mineral in uranium ores. It is often observed to replace uraninite during alteration under reducing conditions. However, it has proven difficult to synthesize coffinite in the laboratory and quantitative thermodynamic data for coffinite are lacking. Despite these experimental difficulties, there is ample evidence in nature that many uranium deposits have encountered conditions where formation of coffinite has been favoured over uraninite during postgenetic alteration events. Coffinite is also found as a primary mineral in sandstone uranium deposits. This review elucidates the spatial relation between coffinite and uraninite as seen on different scales with different analytical methods. Some further insight into the mechanism of uraninite alteration in natural, reducing, Si-rich environments is gained and some new arguments put forward, including the question of the effect of impurities and dopants, defects, and grain size. The replacement of uraninite by coffinite is discussed in terms of solid-fluid interaction.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pointeau, V., Deditus, A.P., Miserque, F., Renock, D., Becker, U., Zhang, J., Clavier, N., Dacheaux, N., Poinssot, C. and Ewing, RC, J.Nucl. Mat. 393 449458 (2009).10.1016/j.jnucmat.2009.06.030Google Scholar
2. Amme, M., Wiss, T, Thiele, H, Boulet, P, Lang, H, J. Nucl. Mat. 341, 209223(2005).10.1016/j.jnucmat.2005.02.004Google Scholar
3. Grambow, B., Ferry, C., Casas, I., Bruno, J., Quinones, J., Johnson, L., Energy Procedia 7, 487494 (2011).10.1016/j.egypro.2011.06.066Google Scholar
4. Putnis, A. In: Thermodynamics and Kinetics of Water-Rock Interaction. Oelkers, E. H & Schott, J (eds). Reviews in Mineralogy & Geochemistry 30, 87124 (2009).10.1515/9781501508462-005Google Scholar
5. Villa, I.M., in Spalla, M.I., Marotta, A.M., and Gosso, G. (Eds.) Geol. Soc. London Spec. Publ. 332, 115 (2010).10.1144/SP332.1Google Scholar
6. Janeczek, J and Ewing, RC J Nucl Mat 190, 128132 (1992).10.1016/0022-3115(92)90082-VGoogle Scholar
7. Finch, R. and Murakami, T., in: Burns, P.C. and Finch, R.J. (Eds.) Uranium: Mineralogy, Geochemistry and the Environment. Rev. Min. 38, 91179 (1999).Google Scholar
8. Eyal, Y. and Fleischer, R.L., Geochim. Cosmochim. Acta 49, 11551164 (1985).10.1016/0016-7037(85)90006-7Google Scholar
9. Deditus, A.P., Utsunomiya, S, Ewing, RC, Chem Geol 251, 3349 (2008).10.1016/j.chemgeo.2008.02.009Google Scholar
10. Deditus, A.P., Pointeau, V., Zhang, J., Ewing, R.C., Am Min, submitted Google Scholar
11. Leroy, J. and Holliger, P., Chem. Geol. 45, 121134 (1984).10.1016/0009-2541(84)90119-0Google Scholar
12. Janeczek, J. and Ewing, RC, MRS Symp Proc 257, 497504(1992).10.1557/PROC-257-497Google Scholar
13. Janeczek, J. and Ewing, RC, J Nucl Mat 190, 157173 (1992).10.1016/0022-3115(92)90084-XGoogle Scholar
14. Janeczek, J. and Ewing, R.C., Geochim. Cosmochim. Acta 59, 19171931 (1995).10.1016/0016-7037(95)00117-4Google Scholar
15. Jensen, KA and Ewing, RC, GSA Bull. 113, 3262 (2001).10.1130/0016-7606(2001)113<0032:TOLNFR>2.0.CO;22.0.CO;2>Google Scholar
16. Fayek, M., Utsunomiya, S., Ewing, R.C., Riciputi, L.R., and Jensen, K.A., Am. Min. 88, 15831590(2003).10.2138/am-2003-1021Google Scholar
17. Evins, L.Z., Jensen, K.A. and Ewing, R.C., Geochim. Cosmochim. Acta 69, 15891606 (2005).10.1016/j.gca.2004.07.013Google Scholar
18. Fayek, M., Harrison, T.M., Ewing, R.C., Grove, M., Coath, C.D., Chem. Geol. 185, 205225 (2002).10.1016/S0009-2541(01)00401-6Google Scholar
19. Alexandre, P. and Kyser, T.K., Can. Mineral. 43, 10051017 (2005).10.2113/gscanmin.43.3.1005Google Scholar
20. Ono, S. and Fayek, M., Chem Geol 288, 113 (2011).10.1016/j.chemgeo.2010.03.015Google Scholar
21. Kaija, J. Blomqvist R, R., Suksi, J. and Rasilainen, K., Geol. Surv. Finland, Nuclear Waste Disposal Reseach, Report YST-102 (2000).Google Scholar
22. Zetterström, L., in Louvat, D., Davies, C. (Eds.) OKLO Working Group – Proceedings of the first joint EC-CEA Phase II project held in Sitjes, Spain, 18–20 June 1997. Nucl. Science and Technology EUR 18314 EN, 171180 (1998).Google Scholar
23. Jensen, K.A., Janeczek, J., Ewing, R.C., Stille, P., Gauthier-Lafaye, F., Salah, S., MRS Symp Proc. 608, 525532 (2000).10.1557/PROC-608-525Google Scholar
24. Villa, I.M., Terra Nova, 10, 4247 (1998).10.1046/j.1365-3121.1998.00156.xGoogle Scholar
25. Putnis, A. and Putnis, C.V., J. Solid State Chem. 180, 17831786 (2007).10.1016/j.jssc.2007.03.023Google Scholar
26. Geisler, T., Schaltegger, U, and Tomaschek, F, Elements 3(1), 4350 (2007).10.2113/gselements.3.1.43Google Scholar
27. Gauthier-Lafaye, F., Ledoux, E., Smellie, J., Louvat, D., Michaud, V., Perez-del-Villar, L., Oversby, V., and Bruno, . OKLO-natural analogue Phase II. Behaviour of nuclear reaction products in a natural environment. Nuclear Science and Technology, EUR 19139 EN, 116 p (2000).Google Scholar
28. Fayek, M., Anovitz, L.M., Cole, D.R., Bostick, D.A., Geochim. Cosmochim. Acta 75, 36773686 (2011).10.1016/j.gca.2011.03.040Google Scholar
29. Min, M., Fang, C., Fayek, M., Ore Geol. Rev. 26, 187197 (2005).10.1016/j.oregeorev.2004.10.006Google Scholar
30. Mercadier, J., Cuney, M, Cathelineau, M., Lacorde, M., Miner. Deposita 46,105135 (2011).Google Scholar
31. Pointer, C.M., Ashworth, J.R., Simpson, P.R., Mineral. Deposita 24,117123 (1989)Google Scholar
32. Kříbek, B., Žák, K., Dobeš, P., Leichmann, J., Pudilová, M., René, M., Scharm, B., Scharmová, M., Hájek, A., Holeczy, D., Hein, U.F., Lehmann, B., Miner. Deposita 44, 99128 (2009).10.1007/s00126-008-0188-0Google Scholar
33. Mazeina, L., Ushakov, S.V., Navrotsky, A., Boatner, L., Geochim. Cosmochim. Acta 69, 46754683 (2005).10.1016/j.gca.2005.03.053Google Scholar
34. Costin, D.T., Mesbah, A., Clavier, N., Dacheux, N., Poinssot, C., Szenknect, S., Ravaux, J., Inorg. Chem. 50, 1111711126 (2011).10.1021/ic2016758Google Scholar
35. Hemingway, B.S., Thermodynamic properties of selected uranium compounds and aqueous species at 298.15 K and 1 bar and at higher temperatures; preliminary models for the origin of coffinite deposits. Open File Report 82–619, US Geological Survey (1982).10.3133/ofr82619Google Scholar
36. Xu, H., Wang, Y., J.Nucl. Mat. 265, 117123 (1999).10.1016/S0022-3115(98)00566-2Google Scholar
37. Langmuir, D., Geochim.Cosmochim. Acta 42, 547569 (1978).10.1016/0016-7037(78)90001-7Google Scholar