Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T11:28:39.052Z Has data issue: false hasContentIssue false

Reversible Hydrogen Uptake in Carbon-Based Materials

Published online by Cambridge University Press:  10 February 2011

S. D. M. Brown
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
G. Dresselhaus
Affiliation:
Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139
M. S. Dresselhaus
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

Several approaches for achieving reversible hydrogen uptake by carbon are considered, including intercalation, adsorption by a graphite surface, hydrogenation of fullerenes, and the filling of carbon nanotubes. Most scenarios suggest that it is difficult to achieve an atomic uptake [H/C] ratio exceeding unity. Evidence for H2 uptake by various carbon materials is reviewed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Kranendonk, J. K.. In Solid Hydrogen. Plenum Press, New York, 1983.10.1007/978-1-4684-4301-1Google Scholar
[2] In Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, New Series III/14a, edited by Hellwege, K.-H. and Hellwege, A. M., page 18. Springer-Verlag, Berlin, 1988.Google Scholar
[3] Hynek, S., Fuller, W., Bentley, J., and McCullough, J., in Proc. of the 10th World High Energy Conference, 2, 9851000 (1994).Google Scholar
[4] Koresh, J. and Soffer, A., Faraday, J.C.S. Trans. I. 76, 24722485 (1980).Google Scholar
[5] DeLuchi, M., in Hydrogen fuel-cell vehicles, (Institute of Transportation Studies, Univ. of California, Davis, 1992).Google Scholar
[6] Dresselhaus, M. S. and Dresselhaus, G., Adv. Phys. 30, 139 (1981).Google Scholar
[7] Dresselhaus, M. S., Dresselhaus, G., and Eklund, P. C., Science of Fullerenes and Carbon Nanotubes (Academic Press, New York, NY, 1996).Google Scholar
[8] Rao, A. M., Eklund, P. C., Bandow, S., Thess, A., and Smalley, R. E., Nature (London) 388, 257 (1997).Google Scholar
[9] Guerard, D., Takoudjou, C., and Rousseaux, F., Synth. Met. 7, 43 (1983).Google Scholar
[10] Enoki, T., Nakazawa, K., Suzuki, K., Miyajima, S., Chiba, T., Iye, Y., Yamamoto, H., and Inokuchi, H., J. Less-Common Metals 172–174, 20 (1991).Google Scholar
[11] Doll, G. L., Yang, M. H., and Eklund, P. C., Phys. Rev. B 35, 9790 (1987).10.1103/PhysRevB.35.9790Google Scholar
[12] Miyajima, S., Kabasawa, M., Chiba, T., Enoki, T., Maruyama, Y., and Inokuchi, H., Phys. Rev. Lett. 64, 319 (1990).Google Scholar
[13] Guérard, D., Foley, G. M. T., Zanini, M., and Fischer, J.E., Nuovo Cim. 38, 410 (1977).Google Scholar
[14] Dresselhaus, M. S. and Dresselhaus, G., Advances in Phys. 30, 139326 (1981).Google Scholar
[15] Doll, G. L. and Eklund, P. C., J. Mater. Res. 2, 638 (1987).Google Scholar
[16] Lagrange, P. and Hérold, A., Carbon 16, 235240 (1978).Google Scholar
[17] Terai, T. and Takohaski, Y., Synth. Met. 7, 49 (1983).Google Scholar
[18] Doll, G. L., Eklund, P. C., and Senatore, G.. In Intercalation in Layered Materials, edited by Dresselhaus, M. S.. Plenum Press, New York, 1986.Google Scholar
[19] Doll, G. L. and Eklund, P. C., Phys. Rev. B 36, 9191 (1987).10.1103/PhysRevB.36.9191Google Scholar
[20] Nielsen, M.. In Phase Transitions in Surface Films, edited by Dash, J. G. and Ruvalds, J.. Plenum Press, New York, 1980.Google Scholar
[21] Nielsen, M., McTague, J. P., and Ellenson, W., J. Phys. 38, C4/10 (1977).Google Scholar
[22] Koruga, D., Hameroff, S., Withers, J., Loutfy, R., and Sundareshan, M., in Fullerene C60, History, Physics, Nanobiology, Nanotechnology, (North-Holland, Amsterdam, 1993).Google Scholar
[23] Haufler, R.E., Conceicao, J. J., Chibante, L. P. F., Chai, Y., Byrne, N. E., Flanagan, S., Haley, M. M., O'Brien, S. C., Pan, C., Xiao, Z., Billups, W. E., Ciufolini, M. A., Hauge, R. H., Margrave, J. L., Wilson, L. J., Curl, R. F., and Smalley, R. E., J. Phys. Chem. 94, 8634 (1990).10.1021/j100387a005Google Scholar
[24] Dillon, A. C., Jones, K. M., Bekkedahl, T. A., Kiang, C. H., Bethune, D. S., and Heben, M. J., Nature 386, 377 (1997).Google Scholar
[25] Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y. H., Kim, S. G., Rinzler, A. G., Colbert, D. T., Scuseria, G. E., Tománek, D., Fischer, J. E., and Smalley, R. E., Science 273, 483487 (1996).Google Scholar
[26] Wildöer, J. W. G., Venema, L. C, Rinzler, A. G., Smalley, R. E., and Dekker, C., Nature (London) 391, 5962 (1998).Google Scholar