Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T19:54:45.660Z Has data issue: false hasContentIssue false

Resistive Losses at c-Si/a-Si:H/ZnO Contacts for Heterojunction Solar Cells

Published online by Cambridge University Press:  01 February 2011

Florian Einsele
Affiliation:
[email protected], Forschungszentrum Juelich, IEF-5, Photovoltaics, Jülich, 52425, Germany
Phillip Johannes Rostan
Affiliation:
[email protected], Universität Stuttgart, Institut für Physikalische Elektronik, Pfaffenwaldring 47, Stuttgart, 70569, Germany
Uwe Rau
Affiliation:
[email protected], Forschungszentrum Juelich, IEF-5, Photovoltaics, Photovoltaik, Jülich, 52425, Germany
Get access

Abstract

We study resistive losses at (p)c-Si/(p)Si:H/(n)ZnO heterojunction back contacts for high efficiency silicon solar cells. We find that a low tunnelling resistance for the (p)a-Si:H/(n)ZnO part of the junction requires deposition of Si:H with a high hydrogen dilution RH > 40 resulting in a highly doped μc-Si:H layer. Such a μc-Si:H layer if deposited directly on a Si wafer yields a surface recombination velocity of S  180 cm/s. Using the same layer as part of a (p)c-Si/(p)Si:H/(n)ZnO back contact in a solar cell results in an open circuit voltage Voc = 640 mV and a fill factor FF = 80 %. Insertion of an (i)a-Si-layer between the μc-Si:H and the wafer leads to a further decrease of S and, for the solar cells to an increase of VOC. However, if the thickness of this intrinsic layer exceeds a threshold of 3 nm, resistive losses lead to a degradation of the fill factor of the solar cells. These resistive losses result from a valence band offset δEV between a-Si:H and c-Si of about 600 meV. The fill factor losses overcompensate the VOC gain such that there is no benefit of the (i)a-Si:H interlayer for the overall solar cell performance when using an (i)a-Si:H/(p)uc-Si:H double layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Taguchi, M., Kawamoto, K., Tsuge, S., Baba, T., Sakata, H., Morizane, M., Uchihashi, K., Nakamura, N., Kiyama, S., and Oota, O., Prog. Photov.: Res. Appl. 8, 503 (2000).Google Scholar
2 Mimura, H. and Hatanaka, Y., Appl. Phys. Lett. 50 (6), 326 (1987).Google Scholar
3 Essick, J. M. and Cohen, J. D., Appl. Phys. Lett. 55 (12), 1232 (1989).Google Scholar
4 Essick, J. M., Nobel, Z., Li, Y.-M., and Bennett, M. S., Phys. Rev. B 54 (7), 4885 (1996).Google Scholar
5 Sebastiani, M., Gaspare, L. Di, Capellini, G., Bittencourt, C., and Evangelisti, F., Phys. Rev. Lett. 75, 3352 (1995).Google Scholar
6 Rostan, P. J., Rau, U., Nguyen, V. X., Kirchartz, T., Schubert, M. B., and Werner, J. H., Sol. En. Mat. Sol. Cells 90, 1345 (2006).Google Scholar
7 Keppner, H., Meier, J., Torres, P., Fischer, D., and Shah, A., Appl. Phys. A 69, 169 (1999).Google Scholar
8 Plagwitz, H., Nerding, M., Ott, N., Strunk, H. P., and Brendel, R., Prog. Photov.: Res. Appl. 13, 381 (2005).Google Scholar
9 Jensen, N., Hausner, R. M., Bergmann, R. B., Werner, J. H., and Rau, U., Prog. Photov.: Res. Appl. 10, 1 (2002).Google Scholar
10 Einsele, F., Rostan, P. J., and U. Rau (unpublished).Google Scholar
11 Sinton, R. A. and Cuevas, A., Appl. Phys. Lett. 69, 2510 (1996).Google Scholar
12 Sproul, A. B., J. Appl. Phys. 76 (5), 2851 (1994).Google Scholar
13 Wolf, S. De and Beaucarne, G., Appl. Phys. Lett. 88, 022104 (2006).Google Scholar