Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-29T10:15:03.140Z Has data issue: false hasContentIssue false

Relaxor Behavior in Ba0.8Sr0.2TiO3/ZrO2 Heterostructured Thin Films

Published online by Cambridge University Press:  11 July 2012

Santosh K. Sahoo
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, Colorado 80401, USA New Jersey Institute of Technology, Newark, New Jersey 07102, USA
H. Bakhru
Affiliation:
College of Nanoscale Science and Engineering, SUNY Albany, Albany, New York 12203, USA
Sumit Kumar
Affiliation:
Intel Corporation, 5000 W chandler Blvd., Chandler, Arizona 85226, USA
D. Misra
Affiliation:
New Jersey Institute of Technology, Newark, New Jersey 07102, USA
Y. N. Mohapatra
Affiliation:
Materials Science Programme, IIT Kanpur, Kanpur 208016, India
D. C. Agrawal
Affiliation:
Materials Science Programme, IIT Kanpur, Kanpur 208016, India
Get access

Abstract

Ba0.8Sr0.2TiO3 (BST) thin films and Ba0.8Sr0.2TiO3/ZrO2 heterostructured thin films have been successfully fabricated on Pt/Ti/SiO2/Si substrates by a sol-gel process. The dielectric properties of these films were measured as a function of temperature in the frequency range of 1 kHz to 1 MHz. It is clearly observed that the dielectric peaks exist and shift to high temperature with the increase of frequency indicating the presence of relaxor-type behavior in the films. Also it is seen that one dielectric peak is observed in single layer BST thin films whereas two dielectric peaks are observed in BST/ZrO2 heterostructured thin films due to the presence of two dielectric layers having different band gap energies. The variation of peak temperature Tm, corresponding to dielectric loss maximum, with frequency and fitting to Arrhenius law gives activation energy of 1.24 eV which is very close to the activation energy of oxygen vacancies in BaTiO3. Hence, oxygen vacancies are the active defects which are contributing to the relaxation process in these films.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lin, Y. –B. and Lee, J. Y. –M., J. Appl. Phys. 87, 1841 (2000).CrossRefGoogle Scholar
Sahoo, S. K., Agrawal, D. C., Mohapatra, Y. N., Majumder, S. B., and Katiyar, R. S., Appl. Phys. Lett. 85, 5001 (2004).Google Scholar
Sahoo, S. K., Misra, D., Agrawal, D. C., Mohapatra, Y. N., Majumder, S. B., and Katiyar, R. S., J. Appl. Phys. 108, 074112 (2010).CrossRefGoogle Scholar
Sahoo, S. K., Misra, D., Sahoo, M., MacDonald, C. A., Bakhru, H., Agrawal, D. C., Mohapatra, Y. N., Majumder, S. B., and Katiyar, R. S., J. Appl. Phys. 109, 064108 (2011).CrossRefGoogle Scholar
Jain, M., Majumder, S. B., Katiyar, R. S., Agrawal, D. C., and Bhalla, A. S., Appl. Phys. Lett. 81, 3212 (2002).CrossRefGoogle Scholar
Hubert, C. and Levy, J., Appl. Phys. Lett., 73, 3229 (1998).CrossRefGoogle Scholar
Hubert, C., Levy, J., Cukauskas, E.J. and Kirchaoefer, S., Phys. Rev. Lett., 85 (1998).Google Scholar
Lu, S. G., Zhu, X.H., Mak, C.L., Wong, K.H., Chan, H.L.W. and Choi, C.L., Appl.Phys.Lett. 82, 2877 (2003).CrossRefGoogle Scholar
Cheng, B. L., Su, B., Holmes, J. E., Button, T. W., Gabbay, M., and Fantozzi, G., J. Electroceram. 9, 17 (2002).CrossRefGoogle Scholar
He, L.-X., Li, C.-E., Wang, Z.-Y., Yan, H.-X., and Liu, W., Phys. Stat. Sol. (a) 179, 275 (2000).3.0.CO;2-F>CrossRefGoogle Scholar
Sheng, M. R., Dong, Z. G., Gan, Z. Q., Ge, S. B., and Cao, W. W., Appl. Phys. Lett. 80, 2538 (2002).CrossRefGoogle Scholar
Lee, S. J., Kang, K. Y., and Han, S. K., Appl. Phys. Lett. 75, 1784 (1999).CrossRefGoogle Scholar
Cheng, B. L., Gabbay, M., Maglione, M., and Fantozzi, G., J. Electroceram. 10, 5 (2003).CrossRefGoogle Scholar
Homes, C. C., Vogt, T., Shapiro, S. M., Wakimoto, S., Ramirez, A. P., Science 293, 673 (2001).CrossRefGoogle Scholar
Wu, J., Nan, C. W., Lin, Y. H., and Deng, Y., Phys. Rev. Lett. 89, 217601 (2002).CrossRefGoogle Scholar
Ramirez, A. P., Subramanian, M. A., Gardela, M., Blumberg, G., Li, D., Vogt, T., Shapiro, S. M., Solid State Commun. 115, 217 (2000).CrossRefGoogle Scholar
Anju Dixit, private communication.Google Scholar
Li, W., Auciello, O., Premnath, R. N., and Kabius, B., Appl. Phys. Lett. 96, 162907 (2010).CrossRefGoogle Scholar