No CrossRef data available.
Published online by Cambridge University Press: 26 February 2011
Intensity oscillations of the specular reflection high energy electron diffraction (RHEED) beam contain useful information on the mode of growth and the evolving structure of thin films. We present RHEED studies of the growth of DyBa2Cu3O7−x films and DyBa2Cu3O7−x/DY2O3/DyBa2Cu3O7−x structures on SrTiO3; substrates deposited by ozone-assisted molecular beam epitaxy. The effect of substrate temperature, ozone flux and surface step densities on the epitaxial relationship and evolving microstructure will be discussed. The strong damping of the oscillations and identical time periods under different nuoleation and growth conditions suggest that the intensity oscillations are a consequence of to diffuse scattering from step edges rather than a layer-by-layer growth mode. It was also found that Dy2O3 can be used to fabricatee tri-layer type structures but not superlattice structures.