Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-09T15:07:57.415Z Has data issue: false hasContentIssue false

Reduction of Thermal Stress in Mbe Grown GaAs/Si by Patterning

Published online by Cambridge University Press:  28 February 2011

J. P. Van Der Ziel
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Naresh Chand
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
J. S. Weiner
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

The biaxial tensile stress of 2.65 kbar in as-grown GaAs/Si for T < 100K is reduced by post-growth patterning of the GaAs and the reduction in stress, as determined by photoluminescence and cathodoluminescence, is dependent on the pattern size and shape. For stripe patterns less than 15 gm wide the stress is largely uniaxial with stress relief normal to the stripe direction. Rectangular patterns exhibited stress relief in orthogonal directions, and a 9 x 12 µm2 rectangle exhibited an average stress of 0.5 kbar. For as-grown GaAs/Si layers 0.9 to 3.25 µm thick, the stress is weakly dependent on layer thickness. For T > looK the stress in as-grown GaAs/Si is reduced and at 295K a value of 1.51 ± 0.21 kbar is obtained. With patterned growth, using a native SiO2 mask, no reduction in stress was observed irrespective of the pattern size, indicating the importance of free GaAs edges in obtaining stress relief.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chand, N., Ziel, J. P. van der, Weiner, J. S., Sergent, A. M., Cho, A. Y., and Grim, K. A., AppI. Phys. Lett. 53, 225 (1988).Google Scholar
2. Ziel, J. P. van der and Dupuis, R. D., Material Science and Engineering, B1, 37 (1988).Google Scholar
3. Ziel, J. P. van der, Dupuis, R. D., Logan, R. A. and Pinzone, C. J., Appl. Phys. Lett. 51, 89 (1987).Google Scholar
4. Chand, N., Ziel, J. P. van der, Dupuis, R. D., and Sergent, A. M., Optoelectronics-Devices and Technologies, 2, 329 (1987).Google Scholar
5. Zemon, S., Shastry, S. K., Norris, P., Jagannath, C. and Lambert, G., Solid State Commun. 58, 457 (1986).Google Scholar
6. Duncan, W. M., Lee, J. W., Matyi, R. J., and Liu, H-Y., J. Appl. Phys. 59, 2161 (1986).Google Scholar
7. Enatsu, M., Shimizu, M., Mizuki, T., Sugawara, K. and Sakurai, T., Jap. J. Appl. Phys. 26, L1468 (1987).CrossRefGoogle Scholar
8. Zemon, S., Jagannath, C., Koteles, E. S., Shastry, S. K., Norris, P., Lambert, G., Choudhury, A. N. M., and Armiento, C. A., in Gallium Arsenide and Related Compounds 1986, Edited by Lindley, W. T. (Institute of Physics, Bristol, 1987), Inst. Phys. Conf. Ser. No. 83, 141.Google Scholar
9. Huang, Y., Yu, P. Y., Lee, H. and Wang, S., Appl. Phys. Lett. 52, 579 (1988).Google Scholar
10. Zemon, S., Jagannath, C., Shastry, S. K., Miniscalco, W. J., and Lambert, G., Appl. Phys. Lett. 53, 213 (1988).CrossRefGoogle Scholar
11. Lee, H. P., Wang, S., Huang, Y. H. and Yu, P., Appl. Phys. Lett. 52, 215 (1988).Google Scholar
12. Jacobi, B. G., Zemon, S., Norris, P., Jagannath, G. and Sheldon, P., Appl. Phys. Lett. 51, 2236 (1987).Google Scholar
13. Yacobi, B. G., Jagannath, C., Zemon, S., and Sheldon, P., Appl. Phys. Lett. 52, 555 (1988).Google Scholar
14. Lee, H. P., Liu, X., Lin, H., Smith, J. S., Wang, S., Huang, Y. H., Yu, P., and Huang, Y. Z., Appl. Phys. Lett. 53, 2394 (1988).CrossRefGoogle Scholar
15. Hensel, J. and Feher, L., Phys. Rev. 129, 1041 (1963).CrossRefGoogle Scholar
16. Pollak, F. H. and Cardona, M., Phys. Rev. 172, 816 (1968).Google Scholar
17.The parameters were obtained from the experimental data of Chandrasekhar, M. and F. Pollak, H., Phys. Rev. B 15, 2127 (1977), and using the theory of Ref. 15.Google Scholar
18. Cottam, R. I. and Saunders, G. A., J. Phys. C6, 2105 (1973).Google Scholar