Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T11:39:04.103Z Has data issue: false hasContentIssue false

Reduced Thermal Conductivity by Low-Frequency Optic Phonons that Give Rise to Negative Thermal Expansion: Opportunities for Thermoelectrics?

Published online by Cambridge University Press:  01 February 2011

Mary Anne White
Affiliation:
[email protected], Dalhousie University, Department of Chemistry and Institute for Research in Materials, Department of Chemistry, Dalhousie University, Halifax, B3H 4J3, Canada
Catherine A. Whitman
Affiliation:
[email protected], Dalhousie University, Department of Chemistry and Institute for Research in Materials, Halifax, B3H 4J3, Canada
Get access

Abstract

We have recently found that the negative thermal expansion (NTE) materials, ZrW2O8 and HfMo2O8, show exceptionally low thermal conductivity. We surmise that the mechanism is the efficient coupling of the low-frequency optic phonons that give rise to negative thermal expansion with the heat-carrying acoustic phonons. Although neither ZrW2O8 nor HfMo2O8 has suitable electronic properties for thermoelectric applications, perhaps the principle of reduced thermal conductivity by low-frequency optic phonons in NTE materials can be used to develop more efficient thermoelectric materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. White, M. A., J. de Phys. 48, C1565 (1987).Google Scholar
2. Tse, J. and White, M. A., J. Phys. Chem. 92, 5006 (1988).Google Scholar
3. Slack, G. A., in CRC Handbook of Thermoelectrics, edited by Rowe, D. M. (CRC Press LLC, Boca Raton, 1995) p. 407.Google Scholar
4. Kennedy, C. A. and White, M. A., Solid State Commun. 134, 271 (2005).Google Scholar
5. Kennedy, C. A. and White, M. A., Wilkinson, A. P. and Varga, T., Appl. Phys. Lett. 90, 151906 (2007).Google Scholar
6. Evans, J. S. O., Mary, T. A., Vogt, T., Subramanian, M. A. and Sleight, A. W., Chem. Mater. 8, 2809 (1996).Google Scholar
7. Lind, C., PhD dissertation: Negative thermal expansion materials related to cubic zirconium tungstate, Georgia Institute of Technology (2001).Google Scholar
8. Evans, J. S. O., David, W. I. F. and Sleight, A. W., Acta. Crys. B 55, 333 (1999).Google Scholar
9. Evans, J. S. O., Mary, T. A., and Sleight, A. W., Physica B 241, 311 (1998).Google Scholar
10. Kennedy, C. A., White, M. A., Wilkinson, A. P. and Varga, T., Phys. Rev. B 75, 224302 (2007).Google Scholar
11. Ernst, G., Broholm, C., Kowach, G. R. and Ramirez, A. P., Nature 396, 147 (1998).Google Scholar
12. Pryde, A. K. A., Hammonds, K. D., Dove, M. T., Heine, V., Gale, J. D. and Warren, M. C., J. Phys.: Condens. Matter 8, 10973 (1996).Google Scholar
13. Qiu, L. and White, M. A., J. Chem. Educ. 78, 1076 (2001).Google Scholar
14. White, M. A., Qiu, L. and Nolas, G., Thermal Conductivity 27, 72 (2004).Google Scholar
15. Gopal, E. S. R., Specific Heats at Low Temperatures, (Plenum Press, 1966) p. 21.Google Scholar
16. Stevens, R., Linford, J., Woodfield, B. F., Boerio-Goates, J., Lind, C., Wilkinson, A. P. and Kowach, G., J. Chem. Thermodyn. 35, 919 (2003).Google Scholar
17. Klemens, P. G., High Temp. -High Pressures 23, 241 (1991).Google Scholar
18. Cahill, D. G. and Pohl, R. O., Annu. Rev. Phys. Chem. 39, 93 (1988).Google Scholar
19.See, for example, Barron, T. H. K., Collins, J. G. and White, G. K., Adv. Phys. 29, 618 (1980).Google Scholar