Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T06:15:17.799Z Has data issue: false hasContentIssue false

Redistribution of Mn upon Annealing in Ferromagnetic Mn-implanted Si

Published online by Cambridge University Press:  26 February 2011

Martin Bolduc
Affiliation:
[email protected], Massachusetts Institute of Technology, Materials Science and Engineering, #13-4017, 77 Massachusetts Ave, Cambridge, Massachusetts, 02139, United States, 617-253-6898, 617-252-1020
Chaffra Awo-Affouda
Affiliation:
[email protected], SUNY - Albany, College of Nanoscale Science and Engineering, United States
Frank Ramos
Affiliation:
[email protected], SUNY - Albany, College of Nanoscale Science and Engineering, United States
Vincent P LaBella
Affiliation:
[email protected], SUNY - Albany, College of Nanoscale Science and Engineering
Get access

Abstract

The redistribution of implanted Mn ions in Si after thermal annealing is studied. P-type Si wafers were implanted with 300-keV Mn+ ions at 350°C to a dose of 1×1015 cm-2, and then annealed at 800 °C for 5 min. Ferromagnetic hysteresis loops were obtained at 10 K using a SQUID magnetometer both before and after annealing. The saturation magnetization increases by ∼2 × after the post-implant annealing, while the Mn redistributes with sharp peaks in concentration. The calculated point-defect profile created during the implantation process peaks around the Mn-depleted region, suggesting that the residual implant damage may play a role in the ferromagnetic behavior of Mn-implanted Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ohno, H., Science 281, 951 (1998).Google Scholar
[2] Pearton, S. J., Abernathy, C. R., Norton, D. P., Hebard, A. F., Park, Y. D., Boatner, L. A., and Budai, J. D., Mater. Sci. Eng. R Rep. R 40, 137 (2003).Google Scholar
[3] Chen, X., Na, M., Cheon, M., Wang, S., Luo, H., McCombe, B. D., Liu, X., Sasaki, Y., Wojtowicz, T., Furdyna, J. K., et al. , Appl. Phys. Lett. 81, 511 (2002).Google Scholar
[4] Tsui, F., He, L., Ma, L., Tkachuk, A., Chu, Y. S., Nakajima, K., and Chikyow, T., Phys. Rev. Lett. 91, 177203 (2003).Google Scholar
[5] Park, Y. D., Hanbicki, A. T., Erwin, S. C., Hellberg, C. S., Sullivan, J. M., Mattson, J. E., Ambrose, T. F., Wilson, A., Spanos, G., and Jonker, B. T., Science 295, 651 (2002).Google Scholar
[6] Cho, S., Choi, S., Hong, S. C., Kim, Y., Ketterson, J. B., Kim, B.-J., Kim, Y. C., and Jung, J.-H., Phys. Rev. B 66, 033303 (2002).Google Scholar
[7] Dietl, T., Ohno, H., Matsukura, F., Cibert, J., and Ferrand, D., Science 287, 1019 (2000).Google Scholar
[8] Berciu, M. and Bhatt, R. N., Phys. Rev. Lett. 87, 107203 (2001).Google Scholar
[9] Wellmann, P. J., Garcia, J. M., Feng, J. L., and Petro, P. M., Appl. Phys. Lett. 71, 2532 (1997).Google Scholar
[10] Park, Y. D., Wilson, A., Hanbicki, A. T., Mattson, J. E., Ambrose, T., Spanos, G., and Tonker, B. T., Appl. Phys. Lett. 78, 2739 (2001).Google Scholar
[11] Theodoropoulou, N., Hebard, A. F., Overberg, M. E., Abernathy, C. R., and Pearton, S. J., Phys. Rev. Lett. 89, 107203 (2002).Google Scholar
[12] Hebard, A. F., Rairigh, R. P., Kelly, J. G., Pearton, S. J., Abernathy, C. R., Chu, S. N. G., and Wilson, R. G., J. Phys. D; Appl. Phys. (UK) 37, 511 (2004).Google Scholar
[13] Williams, J. S., Mater. Sci. Eng. A A253, 8 (1998).Google Scholar
[14] Kucheyev, S. O., Williams, J. S., and Pearton, S. J., Mater. Sci. Eng. R Rep. R 33, 51 (2001).Google Scholar
[15] Serres, A., Respaud, M., Benassayag, G., Armand, C., Pesant, J. C., Mari, A., Liental-Weber, Z., and Claverie, A., Physica E 17, 371 (2003).Google Scholar
[16] Shi, J., Kikkawa, J. M., Awschalom, D. D., Medeiros-Ribeiro, G., Petro, P. M., and Babcock, K., J. Appl. Phys. 79, 5296 (1996).Google Scholar
[17] Chen, C., Cai, M., Wang, X., Xu, S., Zhang, M., Ding, X., and Sun, Y., J. Appl. Phys. 87, 5636 (2000).Google Scholar
[18] Theodoropoulou, N., Hebard, A. F., Chu, S. N. G., Overberg, M. E., Abernathy, C. R., Pearton, S. J., Wilson, R. G., and Zavada, J. M., J. Appl. Phys. 91, 7499 (2002).Google Scholar
[19] Overberg, M. E., Gila, B. P., Thaler, G. T., Abernathy, C. R., Pearton, S. J., Theodoropoulou, N. A., McCarthy, K. T., Arnason, S. B., Hebard, A. F., Chu, S. N. G., et al. , J. Vac. Sci. Technol. B 20, 969 (2002).Google Scholar
[20] Woodbury, H. H. and Ludwig, G. W., Phys. Rev. 117, 102 (1960).Google Scholar
[21] Bolduc, M., Awo-Aouda, C., Stollenwerk, A., Huang, M. B., Ramos, F. G., Agnello, G., and LaBella, V. P., Phys. Rev. B 71, 033302 (2005).Google Scholar
[22] Bolduc, M., Awo-Aouda, C., Stollenwerk, A., Huang, M. B., Ramos, F., and LaBella, V. P., Nucl. Instrum. Methods Phys. Res. B0, (in press) (2005).Google Scholar
[23] Liu, L., Chena, N., Songa, S., Yina, Z., Yanga, F., Chaia, C., Yanga, S., and Liua, Z., J. Cryst. Growth 273, 458 (2005).Google Scholar
[24] Bolduc, M., Awo-Aouda, C., Stollenwerk, A., Huang, M. B., Ramos, F., Agnello, G., and LaBella, V. P., Mater. Res. Soc. Symp. Proc. 853E, 4 (2005).Google Scholar
[25] Bolduc, M., C. Awo-A ouda, Ramos, F., and LaBella, V. P., J. Vac. Sci. Technol. B 00, (submitted 9/2005) (2006).Google Scholar
[26] Awo-Aouda, C., Bolduc, M., Huang, M. B., Ramos, F., Dunn, K. A., Thiel, B., Agnello, G., and LaBella, V. P., J. Vac. Sci. Technol. B 00, (submitted 9/2005) (2006).Google Scholar
[27] Kwon, D., Kim, H. K., Kim, J. H., Ihm, Y. E., Kim, D., Kim, H., Baek, J. S., Kim, C. S., and Choo, W. K., J. Magn. Magn. Mater. 282, 240 (2004).Google Scholar
[28] Sulpice, A., Gottlieb, U., ronte, M. A, and Laborde, O., J. Magn. Magn. Mater. 272–276, 519 (2004).Google Scholar
[29] Gottlieb, U., Sulpice, A., Lambert-Andron, B., and Laborde, O., J. Alloys Compounds 361, 13 (2003).Google Scholar
[30] Yamada, M., Goto, T., and Kanomata, T., J. Alloys Compounds 364, 37 (2004).Google Scholar
[31] Bader, R. and Kalbitzer, S., Appl. Phys. Lett. 16, 13 (1970).Google Scholar
[32] Sadana, D. K., Norcott, M. H., Wilson, R. G., and Dahmen, U., Appl. Phys. Lett. 49, 1169 (1986).Google Scholar
[33] Wilson, R. G., Jamba, D. M., Sadana, D. K., and Hopkins, C. G., J. Appl. Phys. 61, 1355 (1987).Google Scholar
[34] Lietoila, A., Gibbons, J. F., Magee, T. J., Peng, J., and Hong, J. D., Appl. Phys. Lett. 35, 532 (1979).Google Scholar
[35] Francois-Saint-Cyr, H., Anoshkina, E., Stevie, F., Chow, L., Richardson, K., and Zhou, D., J. Vac. Sci. Technol. B 19, 1769 (2001).Google Scholar
[36] Lam, N. Q., Okamoto, P. R., and Johnson, R. A., J. Nuc. Mat. 78, 408 (1978).Google Scholar
[37] Bernardini, F., Picozzi, S., and Continenza, A., Appl. Phys. Lett. 84, 2289 (2004).Google Scholar