Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T09:43:26.405Z Has data issue: false hasContentIssue false

Red Shift in Optical Absorption Tail and Superparamagnetism of γ- Fe2O3 Nanoparticles in a Polymer Matrix

Published online by Cambridge University Press:  11 February 2011

John K. Vassiliou
Affiliation:
Department of Physics, Villanova University, Villanova, PA 19085
Jens W. Otto
Affiliation:
Joint Research Center for the European Commission, B-1049 Brussels, Belgium
V. Mehrotra
Affiliation:
RSC Rockwell, Thousand Oaks, CA
J. J. Davis
Affiliation:
Department of Physics, Villanova University, Villanova, PA 19085
Get access

Abstract

Well defined spherical particles of γ- Fe2O3 have been synthesized in the pores of a polymer matrix in the form of beads by an ion exchange and precipitation reaction. The particle size distribution is a gaussian with an average diameter of 80 A. The DC magnetic susceptibility and the magnetization of the nanocomposite has been measured between 4 and 300 K using a Faraday balance and a magnetometer, respectively. The magnetic measurements demonstrate that the particles are superparamagnetic with a blocking temperature Tb about 55 K. The optical absorption edge of the mesoscopic system is red shifted with respect to single crystal films of γ-Fe2O3 with an absorption tail extended deeply in the gap. Although lattice distortion and existence of excitonic states in the gap can explain the absorption behavior, the red shift can successfully be explained by the quantum confinement of an electron-hole pair in a spherical well.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brus, L. E., Brown, W. L., Andres, R. P., Averback, R. S., Goddard, W. A. III, Kaldor, A., Louie, S. G., Moskovits, M., Peercy, P. S., Riley, S.J., Siegel, R. W., Spaepen, F. A., Wang, Y., J. Mat. Res., 4, 704 (1089).Google Scholar
2. Research Opportunities for materials with Ultrafine Microstructures, (National Academy, Alexandria, 1989).Google Scholar
3. Science, 254, 1300 (1991).Google Scholar
4. Bittler, K. and Ostertag, W., Angew. Chem. Int. Ed. Engl. 19, 190, (1980).Google Scholar
5. Ball, P. and Garwin, L., Nature 355, 761 (1992).Google Scholar
6. Stucky, G. D. and MaCdougall, J. E., Science 247, 669 (1990).Google Scholar
7. Gunther, L., Physics World, December, pp. 2834 (1990).Google Scholar
8. McMichael, R. D., Shull, R. D., Swartzendruder, L. J., Bennett, L. H. and Watson, R. D., J. Magn. Mater. 111, 29 (1992).Google Scholar
9. Rosensweig, R. E., Ferrohydrodynamics (MIT Press, Cambridge, 1985).Google Scholar
10. Ziolo, R. F., U.S. Patent 4 474 866, 1984.Google Scholar
11. Kittel, C., Phys. Rev. 70, 965 (1946);Google Scholar
Dunlop, D. J., Phys. Earth Planet. Inter. 26, 1 (1981).Google Scholar
12. Bean, C. P. and Livingston, J. D., J. Appl. Phys. 30, 120 (1959).Google Scholar
13. Jacobs, I. S. and Bean, C. P., in Magnetism III, edited by Rado, G. T. and Shul, H. (Academic, New York, 1963), Chap. 6, and references therein.Google Scholar
14. Chudnovsky, E. M. and Gunther, L., Phys. Rev. Lett. 60, 661 (1988).Google Scholar
15. Chudnovsky, E. M. and Gunther, L., Phys. Rev. B 37, 9455 (1988).Google Scholar
16. Leggett, A. J., Chakravarty, S., Dorsey, A. T., Fisher, M. P. A., Garg, A., and Zuerger, W., Rev. Mod. Phys. 59, 1 (1987).Google Scholar
17. Fauchet, P. M., Tsai, C. C. and Tanaka, K., Eds. in Materials Issues in Microcrystalline Semiconductors (Materials Research Society, Pittsburgh, PA, 1990).Google Scholar
18. Vassiliou, J. K., Mehrotra, V., Russell, M. W. and Giannelis, E. P., Mater. Res. Soc. symp. Proc. 206, 561 (1991);Google Scholar
Ziolo, R. F., Giannelis, E. P., Weinstein, B. A., O'Horo, M. P., Ganguly, B. N., Mehrotra, V., Russell, M. W., and Huffman, D. R., Science 257, 219 (1992).Google Scholar
19. Vassiliou, J. K., Mehrotra, V., Russell, M. W., Giannelis, E. M., McMichael, R. D., Shull, R.D., and Ziolo, R. F., J. Appl. Phys. 73, 5109 (1993).Google Scholar
20. Takey, H. and Chiba, S., J. Phys. Soc. Jpn. 21, 1255 (1966).Google Scholar
21. Kayanuma, Y., Solid State Commun. 59, 405 (1986); Phys. Rev. B 38, 9797 (1988).Google Scholar
22. Hayashi, M, Iwano, T., Nasu, H., Kamiya, K., Sugimotom, N. and Hirao, K., J. Mater. Res. 12, 2552 (1997);Google Scholar
Yu, B., Zhu, C., and Gan, F., Opt. Mater. 7, 15 (1997).Google Scholar
23. Takagahara, T., Phys. Rev. B 47, 4569 (1993).Google Scholar
24. Neel, L., Rev. Mod Phys. 25, 293 (1953); Adv. Phys. 4, 191 (1955).Google Scholar
25. Brown, W. F. Jr, J. Appl. Phys. 30, 130 (1959);Google Scholar
Brown, W. F. Jr, J. Appl. Phys., 34, 1319 (1963).Google Scholar
26. Brown, W. F. Jr, in Fluctuation Phenomena in Solids (Academic, New York, 1964), p. 37.Google Scholar