Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-02T23:14:15.715Z Has data issue: false hasContentIssue false

Recovery from the Metastable EL2 Defect in GaAs Under Monochromatic Light Illumination.

Published online by Cambridge University Press:  25 February 2011

M. O. Manasreh
Affiliation:
Electronic Technology Laboratory (WRDC/ELRA), Wright Research and Development Center, Wright-Patterson Air Force Base, Ohio 45433-6543
D. W. Fischer
Affiliation:
Materials Laboratory (WRDC/MLPO), Wright Research and Development Center, Wright-Patterson Air Force Base, Ohio 45433-6533.
Get access

Abstract

The infrared absorption technique is used to study the recovery of the EL2 metastable state in semi-insulating GaAs under monochromatic light illumination. The induced optical recovery is monitored after low intensity (≤ 2mW/cm2) irradiation in the energy range 0.7 ≤ hv ≤ 1.5 eV. The data exhibit a complex structure consisting of a broad band around 0.9 eV and a set of multiple sharp peaks between 1.44 and 1.5 eV. This recovery is strongly dependent on the sample, temperature and illumination time. The present results suggest that a) the existing data and theoretical predictions for the isolated AsGa antisite structure are not compatable with the optical recovery data, b) EL2 is affected dramatically by other defects (traps) present in the sample and c) the peaks observed in the optical recovery data are coincident with the arsenic vacancy energy levels and therefore the present results support the proposed complex models involving an arsenic vacancy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Tajima, M., Jpn. J. Appl. Phys. 23, L690 (1984); 24, L47 (1985).Google Scholar
2 Nojima, S., J. Appl. Phys. 57, 620 (1985); 58, 3485 (1985); S. Nojima and H. Asahi, J. Appl. Phys. 61 1073 (1987).Google Scholar
3 Mochizuki, Y. and Ikoma, T., Jpn. J. Appl. Phys. 24, L895 (1985).Google Scholar
4 Tajima, M. Saito, H., Iino, T., and Ishida, K., Jpn. J. Appl. Phys. 27, L101 (1988).Google Scholar
5 Parker, J. C. and Bray, R., Phys. Rev. B 37, 6368 (1988).Google Scholar
6 Fischer, D. W., Appl. Phys. Lett. 50, 1751 (1987).Google Scholar
7 Fischer, D. W. and Manasreh, M. O., Appl. Phys. Lett. 54, 2018 (1989).Google Scholar
8 von Bardeleben, H. J., Bagraev, N. T., and Bourgoin, J. C., Appl. Phys. Lett. 51,1451 (1987).Google Scholar
9 Fischer, D. W., Phys. Rev. B 37, 2988 (1988).Google Scholar
10 Dabrowski, J. and Scheffler, M., Phys. Rev. Lett. 60, 2183 (1988).Google Scholar
11 Delerue, C., Lannoo, M., Stiévenard, D., von Bardeleben, H. J., and Bourgoin, J. C., Phys. Rev. Lett. 59, 2875 (1987); C. Delerue and M. Lannoo, Phys. Rev. B 38, 3966 (1988).Google Scholar
12 Baraff, G. A. and Schluter, M., Phys. Rev. Lett. 55, 2340 (1985).Google Scholar
13 Wager, J. F. and Van Vechten, J. A., Phys. Rev. B 35, 2330 (1987).Google Scholar
14 Manasreh, M. O. and Fischer, D. W., Phys. Rev. B 40,15 December 1989 (to appear) and references therein.Google Scholar
15 Bourgoin, J. C., von Bardeleben, H. J., and Stievenard, D., J. Appl. Phys. 64, R65 (1988); H. J. von Bardeleben, J. C. Bourgoin, A. Miret, Phys. Rev. B 34, 1360 (1986); H. J. Bardeleben, A. Miret, H. Lim, and J. C. Bourgoin, J. Phys. C 20, 1353 (1987)Google Scholar
16 Taniguchi, M. and Ikoma, T., J. Appl. Phys. 54, 6448 (1983); M. Taniguchi and T. Ikoma, Appl. Phys. Lett. 45, 69 (1984).Google Scholar