Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T15:55:28.944Z Has data issue: false hasContentIssue false

Reconciliation of the microcrystalline and the continuous random network model for amorphous semiconductors

Published online by Cambridge University Press:  17 March 2011

J.K. Bording
Affiliation:
Department of Physics, University of Oslo.P.O.Box 1048, Blindern, 0316 OsloNorway, E-mail: [email protected]
J. Tafto
Affiliation:
Department of Physics, University of Oslo.P.O.Box 1048, Blindern, 0316 Oslo, Norway
Get access

Abstract

We show by molecular dynamics simulations, that the radial distribution function of an amorphous material does not change significantly by introducing a considerable volume fraction of nanocrystals. The nanocrystals, embedded in a continuous random network, ensure a certain degree of medium range order in the amorphous material. Our simulations, which are on germanium, show that microcrystals smaller than 2 nm can comprise at least 20 % of the volume without significantly changing the radial distribution function from that of pure continuous random network. By increasing the size of the crystals, without altering the crystal to amorphous volume ratio, the radial distribution changes. The molecular dynamics simulations show that the nanocrystals are unchanged at low temperature. At higher temperature the mobility and critical size of the grains increase, transforming the sub-critical crystalline grains into the surrounding continuous random network matrix.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Rudee, M. L. and Howie, A., Phil. Mag. 25 1001 (1972)Google Scholar
[2] Howie, A., Krivanek, O. L. and Rudee, M. L., Phil. Mag. 27 235 (1973)Google Scholar
[3] Saito, Y., J. Phys. Soc. Jpn. 53 4230 (1984)Google Scholar
[4] Bisaro, R., Zachariasen, J, J. Am. Chem. Soc. 54 3841 (1932)Google Scholar
[5] Polk, D. E., J. Non-Cryst. Solids 5 365 (1971)Google Scholar
[6] Moss, S. C.,. Magariño, P. Germain and Zellama, K., Phys. Rev. B 40 7655 (1989)Google Scholar
[7] Comments, W.H. on Solid State Physics 5 47 (1973)Google Scholar
[8] Weinstein, F. C. and Davis, E. A., J. Non-Cryst. Solids 13 153 (1973/1974)Google Scholar
[9] Wooten, F. and Weaire, D., Solid State Physics 40 1 (1987)Google Scholar
[10] Henderson, D. and Herman, F., J. Non-Cryst. Solids 8–10 359 (1972)Google Scholar
[11] Bording, J. K., Phys. Rev. B 62 7103 (2000)Google Scholar
[12] Ishimaru, M., Munetoh, S. and Motooka, T., Phys. Rev. B 56 15133 (1997)Google Scholar
[13] Bording, J. K. and Tafto, J., Physica Scripta 62 499 (2000)Google Scholar
[14] Etherington, G., Wright, A. C., Wenzel, J. T., Dore, J. C., Clarke, J. T. and Sinclair, R. N., J. Non-Cryst. Solids 48 265 (1982)Google Scholar
[15] Chaudhari, P., Graczyk, J. F. and Charbnau, H. P., Phys. Rev. Lett. 29 425 (1972)Google Scholar
[16] Tersoff, J., Phys. Rev. B 38 9902 (1988)Google Scholar
[17] Tersoff, J., Phys. Rev. B 39 5566 (1989)Google Scholar
[18] James, R. W., The Optical Principles of the Diffraction of X-rays. (Bell, London) 220 (1954)Google Scholar
[19] Batterman, B. W. and Chipman, D. R., Phys. Rev 127 690 (1962)Google Scholar
[20] Ludewig, J., Acta Cryst. A 25 116 (1969)Google Scholar
[21] Bording, J. K. and Tafto, J., Phys. Rev. B 62 8098 (2000)Google Scholar
[22] Brodsky, M. H. and Title, R. S., Phys. Rev. Lett. 23 581 (1969)Google Scholar
[23] Gibson, J. M. and Tracey, M. M. J., Phys. Rev. Lett. 78 1974 (1997)Google Scholar
[24] Tracey, M. M. J., Gibson, J. M. and Keblinski, P. J., J. Non-Cryst. Solids 231 99 (1998)Google Scholar