Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T09:31:20.605Z Has data issue: false hasContentIssue false

A Recessed-Gate In0.52Al0.48As/n+-In0.53Ga0.47As Misfet

Published online by Cambridge University Press:  26 February 2011

Jesús A. del Alamo
Affiliation:
Presently with Massachusetts Institute of Technology, Rm. 13-3062, Cambridge, MA 02139
Takashi Mizutani
Affiliation:
NTT LSI Laboratories, 3-1 Morinosato Wakamiya, Atsugi-shi, Japan
Get access

Abstract

Scaling of the In0.52Al0.48As insulator thickness of In0.52Al0.48As/n+-In0.53Ga0.47As MIStype FET's is experimentally found to result in a drastic drop of performance below 200 Å. This is demonstrated to arise from an increase in the sheet resistance of the extrinsic portions of the device that accompanies insulator scaling. In order to solve this problem, a recessed-gate dopedchannel MISFET with a very thin (300 Å) n+-In0.53Ga0.47As cap layer has been fabricated. A 1.5 μm long gate device showed a transconductance of 285 mS/mm and a current-gain cut-off frequency of 19.4 GHz. This result proves the ability of a thin n+-In0.53Ga0.47As cap to reduce source resistance and improve device performance. The fabricated recessed-gate structure is a promising candidate for high-performance scaled MIS-type FET's based on thin, heavily-doped In0.53Gav0.47 As channels.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Eastman, L. F., Int. Electron Dev. Meeting, 1986, p. 456.Google Scholar
2. Chen, C. Y., Cho, A. Y., Cheng, K. Y., Pearsall, T. P., O'Connor, P., and Garbinski, P. A., IEEE Electron Dev. Lett., EDL–3, 152 (1982).Google Scholar
3. Feuer, M. D., Chang, T.-Y., Shunk, S. C., and Tell, B., IEEE Electron Dev. Lett., EDL–8, 33 (1987).Google Scholar
4. Ohno, H., Barnard, J., Wood, C. E. C., and Eastman, L. F., IEEE Electron Dev. Lett., EDL–1, 154 (1980).CrossRefGoogle Scholar
5. Alamo, J. A. del and Mizutani, T., IEEE Electron Dev. Lett., EDL–8, 534 (1987).Google Scholar
6. Hida, H., Okamoto, A., Toyoshima, H., and Ohata, K., IEEE Trans. Electron Dev., ED–34, 1448 (1987).Google Scholar
7. Lee, S. J., Crowell, C. R., and Lee, C. P., Int. Electron Device Meeting 1983, p. 103.Google Scholar
8. Kamada, M., Kobayashi, T., Ishikawa, H., Mori, Y., Kaneko, K., and Kojima, C., Electron. Lett. 23, 297 (1987).Google Scholar
9. Alamo, J. A. del and Mizutani, T., IEEE Electron Dev. Lett., EDL–9, 654 (1988).Google Scholar
10. Reeves, G. K. and Harrison, H. B., IEEE Electron Dev. Lett., EDL–3, 111 (1982).Google Scholar
11. Feuer, M. D., IEEE Trans. on Electron Dev., ED–32, 7 (1985).Google Scholar
12. Hikosaka, K., Sasa, S., Harada, W., and Kuroda, S., IEEE Electron Dev. Lett., EDL–9, 241 (1988).Google Scholar
13. Alamo, J. A. del and Mizutani, T., IEEE Trans. on Electron Dev., submitted for publication, 1988.Google Scholar
14. Itoh, T., Brown, A. S., Camnitz, L. H., Wicks, G. W., Berry, J. D., and Eastman, L. F., Inst. Physics Conf. Ser. 79, 571 (1986).Google Scholar
15. Palmateer, L. F., Tasker, P. J., Itoh, T., Brown, A. S., Wicks, G. W., and Eastman, L. F., Electron. Lett. 23, 53 (1987).CrossRefGoogle Scholar
16. People, R., Wecht, K. W., Alavi, K., and Cho, A. Y., Appl. Phys. Lett., 43, 118 (1983).Google Scholar