Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T15:41:21.189Z Has data issue: false hasContentIssue false

Recent Developments in High Temperature Shape Memory Alloys

Published online by Cambridge University Press:  16 February 2011

Jeno Beyer
Affiliation:
University of Twente, Department of Mechanical Engineering, Laboratory of Materials Science, P.O.Box 217, 7500 AE Enschede, The Netherlands
Jan.H. Mulder
Affiliation:
University of Twente, Department of Mechanical Engineering, Laboratory of Materials Science, P.O.Box 217, 7500 AE Enschede, The Netherlands
Get access

Abstract

The functional properties of Shape Memory Alloys (SMA's) are used succesfully at present in a variety of industrial and medical applications. The use of these materials in smart structures is now emerging in the field of aeronautic/space technology. Many applications require higher operating temperatures than available to date, or higher cooling rates and/or a higher number of cycles. For this purpose the properties and fabricability of commercial alloys as Ni-Ti-(X), Cu-Al-Ni or Cu-Zn-Al are being adjusted and improved. Other feasible alloys are being developed. The research and development is directed towards the control of the stress, strain, temperature and time dependence of shape memory properties for a stable in-service behaviour. In this paper the various approaches taken up in recent years by academic and industrial laboratories for developing high temperature SMA's are reviewed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

references

1.Humbeeck, J. Van, in: Shape Memory Materials and Phenomena, ed. by Liu, C.T., Kunsmann, H., Otsuka, K., Wuttig, M. (Mater. Res. Soc. Proc. 246, Pittsburgh, PA, 1992), pp.377387.Google Scholar
2.Oshida, Y., Sachadeva, R., Miyazaki, S. and Fukuyo, S., Mat. Science Forum vol 56-58, 705 (1990).Google Scholar
3.Beyer, J., Sanders, M. and Veldhuizen, A.G., IUMRS-ICAM'93 (Tokyo, 1993, (unpublished).Google Scholar
4.Rogers, G.A., Smart Materials, Structures and Mathematical issues. Technomic. publ. co. (1989).Google Scholar
5.Newham, R.E. and Ruschau, G.R., J.Am.Ceram.Soc. 74,466480 (1991)Google Scholar
6.Beyer, J. and Chandrasekaran, M., 75th AGARD Structures and Materials Panel Meeting Lindau, Germany, pp.13.113.7 (1992)Google Scholar
7.Conference on Structural Control, Los Angeles 1994.Google Scholar
8.Funakubo, M., Shape Memory Alloys, Gordon and Breach Science Publ, (1987)Google Scholar
9.Miyaraki, S. and Otsuka, K., ISIJ International 29,353 (1989)Google Scholar
10.Beyer, J. and Mulder, J.H., IUMRS-ICAM'93 Tokyo 1993 Symp.Proc.(unpublished)Google Scholar
11.Wu, M.H., Engineering Aspects of Shape Memory Alloys, Rd. Duerig, T.W. (Butterworth-Heineman, 1990) pp.6988.Google Scholar
12.Hurtado, I., Humbeeck, J. v. and Deleay, L., J.d.Phys. C4 247 (1991)Google Scholar
13.Donkersloot, H.C. and Vucht, J.H.N. Van, J.of Less Com. Met. 20, 83 (1970)Google Scholar
14.Chernov, D.B..-Technical Physics 28, 351, 1983.Google Scholar
15.Shabalovskaya, S.A., Solid State Communications 66, 137 (1988)Google Scholar
16.Kolomytrev, V.I., SMM'94 Beijing, China 1994 Symp.Proc. p.136143Google Scholar
17.Krupp, GmbH, Patent no. DE4006076 (1990)Google Scholar
18.Johnson Service Company, Patent no. US 5,114,504 (1992)Google Scholar
19.Au, K. and Wayman, C.M., Scripta Met 6, 1209 (1972)Google Scholar
20.Reynaud, F., J. Cryst. 9, 263 (1976)Google Scholar
21.Enami, K. and Nenno, S., Trans JIM 19, 571 (1978)Google Scholar
22.Horton, J.A., Liu, C.T. and George, E.P., Mat.Science Eng. (unpublished)Google Scholar
23.Kainuma, R., Nakano, H., Oikawa, K., Ishida, K. and Nishizawa, T. in Shape memory materials and Phenomena, ed. by Liu, C.T., Kunsmann, H., Otsuka, K.Wuttig, M. (Mater. Res. Soc. Proc. 246, Pittsburgh, PA 1992), pp.403409Google Scholar
24.Yang, J.H. and Wayman, C.M., Mat. Sci. Eng. A160, 241 (1993).Google Scholar
25.Kachin, V.N., Matreeva, N.A., Silvokka, V.P. and Chernov, D.V.., Dokl. Acad. Nauk. SSSR 257, 167 (1981)Google Scholar
26.Kachin, V.N., Rustin, V.G., Silvokka, V.P., Kodratyev, V.V., Muslov, S.A., Voronin, V.P., Zolothukhin, Yu.S. and Yurchenko, L.I., Phys. Met. Metall. 67, 125 (1989)Google Scholar
27.Kachin, V.N., Revue Phys. Appl. 24, 733 (1989)Google Scholar
28.Lindquist, P.G. and Wayman, C.M., Eng. Aspects of Shape Memory Alloys, ed. Duerig, T.W. (Butterworth Heinemann 1990) pp.5868Google Scholar
29.Ueno, Y., Piao, M., Oda, K. and Otsuka, K., Proc. 3rd. Japan Int. SAMPE (1993) p. 12741279Google Scholar
30.Golberg, D., Xu, Y., Murakami, Y., Morito, S. and Otsuka, K., Scripta Metall et Mater 30, 1349 (1994)Google Scholar
31.Otsuka, K., Oda, K., Ueno, Y. and Piao, M., Scripta Metall et. Mater 29, 1355 (1993)Google Scholar
32.Wu, S.K. and Wayman, C.M., Shape memory materials, ed. by Doyama, M., Somiya, S., Chang, R.P.H., (Mater. Res. Soc. Proc. 9, Pittsburgh, P.A. 1988) pp. 141145.Google Scholar
33.Wu, S.K. and Wayman, C.M., Scripta Met. 21, 83 (1987)Google Scholar
34.Wu, S.K. and Lo, Y.C., Mat. Science Forum 56-58, 619 (1990).Google Scholar
35.Enami, K., Miyasaka, Y. and Takakura, H., MRS Symp. Proc. 9,135140 (1989)Google Scholar
36.Thoma, P.E., Blok, A.M. and Kao, M.Y., Actuator'92 Proc., Bremen Germany, 1992, p.220224Google Scholar
37.Eckelmeyer, K.M., Scripta Met. 10, 667 (1976)Google Scholar
38.Tuominen, S.M. and Biermann, R.J., J. Metals 40, 32 (1988)Google Scholar
39.Wu, K.H., MRS Symp. Proc. vol. 246, 361366 (1992)Google Scholar
40.Qiang, D.S., Ying, Q.G., Bo, Y.H. and ShiMing, T., in Shape Memory Materials (SMM'94) ed. by Youy, C. and Mailing, T., Int. Acad. Publ. 1994, pp. 248252.Google Scholar
41.Yi, H.C. and Moore, J.J., Mater. Sci. Forum vol.56-58, 735 (1990)Google Scholar
42.Yi, H.C., Moore, J.J. and Pebric, A., Metall. Trans. A23, 59 (1992)Google Scholar
43.Eremenko, V.N., Semenova, E.L. and Tret'yachenko, L.A., Poros Metall. 8, 49 (1991)Google Scholar
44.Mulder, J.H., Maas, J.H. and Beyer, J., Proc. ICOMAT'92, ed. Wayman, C.M. and Perkins, J., Monterey Inst. of Advanced Studies 1993 p. 869875Google Scholar
45.Mulder, J.H., Beyer, J., Donner, P. and Peterseim, J., SMST Conf. Pacific Grove, 1994 (unpublished)Google Scholar
46.Wu, K.H., Pu, Z., Tseng, H.K. and Biancaniello, F.S., SMST Conf. Proc., (unpublished)Google Scholar
47.Zhu, Y.R., Pu, Z.J., Li, C. and Wu, K.H., Shape Memory Materials (SSM'94) ed. Youyi, C. and Hailing, T., Int. Acad. Publ. pp.263268 (1994)Google Scholar
48.Tuominen, S.M., SMST Conf. Pacific Grove, 1994 (unpublished)Google Scholar
49.Meisner, L.L., Grishkov, V.N., in Shape Memory Materials (SMM'94) ed. by Youyi, C., Hailing, T., Int. Acad. Publ. 1994, pp. 263268.Google Scholar
50.Russell, S.M. and Scerzenie, F., SMST Conf. Pacific Grove, 1994 (unpublished)Google Scholar
51.Smialek, J.L. and Hehemann, R.F., Metall. Trans. 4, 1571 (1973)Google Scholar
52.Yang, J.H. and Wayman, C.M., Materials Letters 16, 254 (1993)Google Scholar
53.George, E.P., Liu, C.T., Horton, J.A., Sparks, C.J., Kao, M., Kunsmann, H. and King, T., Materials Characterization 32, 139 (1994)Google Scholar
54.Khadkikar, P.S., Locci, I.E., Vedula, K. and Michal, G.M., Metal Trans 24A, 83 (1993).Google Scholar
55.Elstrodt, A., M.Sc. Thesis University of Twente (1994)Google Scholar
56.Yang, J.H. and Wayman, C.M., Mat.Science Eng. A160, 241 (1993)Google Scholar
57.Wolska, J., Maas, J.H., Chandrasekaran, M. and Beyer, J., Scripta Metall. et Mater. 31, 303 (1994)Google Scholar
58.Wolska, J. and Maas, J.H., ISMANAM-94, Symposium Grenoble, 1994 (unpublished)Google Scholar
59.Kim, Y.D. and Wayman, C.M., Met. Trans., 23A 2981 (1992).Google Scholar
60.Xiaodong, H., Zhifang, Z., Tongchum, L., Junting, L., Dazhi, Y. in Shape memory Materials, ed. by Youyi, Chu and Mailing, T., Int. Acad. Publ. 1994, pp. 258262.Google Scholar