Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T02:30:21.677Z Has data issue: false hasContentIssue false

Recent Developments in Doping Techniques for Compound Semiconductors

Published online by Cambridge University Press:  22 February 2011

J. E. Cunningham
Affiliation:
AT&T Bell Labs Holmdel, NJ
W. T. Tsang
Affiliation:
AT&T Bell Labs, Murray Hill, NJ
Get access

Abstract

We report new methods to dope compound semiconductors. First, we demonstrate the concept of doping engineering whereby it becomes possible to tailor the activation energy of the dopant in a host semiconductor for the first time. In this application, the band offset of a thin, sacrificial semiconductor is used to lower the activation energy of the dopant below its value in the host semiconductor. This allows the freedom to control dopant activity in ways not accessible to a uniformly placed dopant. We chose δ-Be-AlGaAs/GaAs as a model example and show the hole binding energy is reduced by a factor of five. Secondly, we demonstrate overcoming the p-type solubility limit in GaAs by use of monolayer δ-Be in a GaAs base of an HBT. Here, an effective hole concentration of > 1021cm−3 is measured in real devices. We present a qualatative view of doping solubility limitations that are controlled by surface processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]. Ilegiums, M., J. Appl. Phys., 48, 1278 (1977).Google Scholar
[2]. Mitsuyu, T., Ohkawa, K., and Yamazaki, O., Appl. Phys. Lett., 49, 1348 (1986).Google Scholar
[3]. Qiu, J., Cheng, H., DePuydt, J. M. and Haase, M. A., J. Crystal Growth 127, 286 (1993).Google Scholar
[4]. Cunningham, J. E., Kuo, T. Y., Ourmazd, A., Goossen, K., Jan, W., Storz, F., Ren, F., Fonstad, C. G., J. Crystal Growth 111 515 (1991).Google Scholar
[5]. Tsang, W. T., Schubert, E. F. and Cunningham, J. E., Appl. Phys. Lett., 60, 115 (1992).Google Scholar
[6]. Goossen, K. W., Cunningham, J. E., Kuo, T. Y., Jan, W. and Fonstad, C. G., Appl. Phys. Lett., 59, 682 (1991).Google Scholar
[7]. Bastard, G., Phys. Rev. B 24, 4714 (1981).Google Scholar
[8]. Green, R. L. and Bajaji, K. K., Solid State Commun. 53, 1103 (1985).Google Scholar
[9]. Masselink, W. T., Chang, Y. C., Morkoc, H., Reynolds, D. C., Litton, C. W., Bajaji, K. K., and Yu, P. W. solid State Electron. 29,205 (1986).Google Scholar
[10]. Hishida, Y., Isshii, H., Toda, T., and Niina, T., J. Crystal Growth, 95 517 (1989).Google Scholar
[11]. Dingle, R., Stormer, H. L., Gossard, A. C., and Wiegmann, W., App. Phys. Lett. 37, 805, (1978).Google Scholar
[12]. Cunningham, J. E., Chiu, T. H., Ourmazd, A., Jan, W. and Kuo, T. Y., J. Crystal Growth, 105, 111, (1990).Google Scholar
[13]. Schubert, E. F., Stark, J. B., Ullich, B. and Cunningham, J. E., Appl. Phys. Lett., 52, 1508 (1988).Google Scholar
[14]. Kroemer, H., Proc. IEEE 70, 13 (1982).Google Scholar
[15]. Malik, R. J., Lunardi, L. M., Walker, J. F. and Ryan, R. W., IEEE Electron Device Letters EDL–9, 7 (1988).Google Scholar
[16]. Schubert, E. F. Cunningham, J. E., Tsang, W. T. Sol. State. Comm. 63, 591 (1987).Google Scholar
[17]. Duhamel, N., Henoc, P., Alexandre, F. and Rao, E.V.K., Appl. Phys. Lett. 39, 49 (1981).Google Scholar
[18]. Illegems, M., J. Appl. Phys. 48,1278 (1977).Google Scholar
[19]. Lievin, J.L., Dubon-Cheavallier, C., Alexandre, F., Roux, G. Le, Dangla, J. and , Ankri, IEEE Electron Device Letters, EDL–7 129 (1986).Google Scholar
[20]. Drummond, T. J., Lyons, W. G., Fisher, R., Thome, R. E., Morkoc, H., Hopkins, C. G. and Evans, C. A. Jr., J. Vac. Sci. Technol. 21 957 (1982).Google Scholar
[21]. Cunningham, J. E., Williams, M. D., Chiu, T. H., Jan, W. and Storz, F., J. Vac. Sci. And Technol. B. 10, 866 (1992).Google Scholar
[22]. Schubert, E. F., Kuo, J. M., Kroff, R., Luftmann, H. S., Hopkins, L. C., and Sauer, N. J., J. Appl. Phys. 67 1969 (1990).Google Scholar
[23]. Cunningham, J. E., Goossen, K. W., Chiu, T. H., Williams, M. D., Jan, W. and Storz, F., Appl. Phys. Lett. 62, 1236 (1993).Google Scholar
[24]. Ourmazd, A., Cunningham, J., Jan, W. and Rentschler, J. A., Appl. Phys. Lett. 56 854z (1990).Google Scholar
[25]. Cunningham, J. E., Williams, M., Chiu, T. H., Jan, W., Storz, F. and Westerwick, E., J. Crystal Growth, 10, 306 (1992).Google Scholar
[26]. Iimura, Y. and Kawabe, Mitsuo, J. J. Appl. Phys. 25, L81 (1986).Google Scholar
[27]. Hamm, R. A., Humphery, D. A., Nottenburg, R. N., Pannish, M. B., Chen, Y. K., Appl. Phys. Lett., 54, 2586, (1989).Google Scholar
[28]. Tsang, W. T., Choa, F. S., Ha, N. T., J. Elect. Mat., 20, 541, (1991).Google Scholar
[29]. Chiu, T. H., Cunningham, J. E., Robertson, A. and Malm, D., J. Crystal Growth, 105, 155 (1990).Google Scholar
[30]. Kuo, T. Y., Goossen, K. W., Cunningham, J. E., Ourmazd, A., Fonstad, C. G., Ren, F. and Jan, W., Electron. Lett. 26, 1187, (1990).Google Scholar
[31]. Goossen, K. W., Kuo, T. Y., Cunningham, J. E., Jan, W. Y., Ren, F. and Fonstad, C. G., IEEE-Electron Device Transactions, 38, 2423 (1991).Google Scholar
[32]. Chand, N., Fisher, R., Klem, J. and Morkoc, H., J. Vacum Sci. and Technol. B4, 2 (1986).Google Scholar
[33]. Tiwari, S. and Wright, S., Appl. Phys. Lett. 56, 563 (1990).Google Scholar
[34]. Jalaki, R., Notenberg, R. N., Levi, A. F., Hamm, R. A., Pannish, M. B., D. Sivco and Cho, A. Y., Appl. Phys. Lett., 56, 1460 (1990).Google Scholar