Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T07:52:33.688Z Has data issue: false hasContentIssue false

Recent Advances in Development and Processing of Titanium Aluminide Alloys

Published online by Cambridge University Press:  21 March 2011

Fritz Appel
Affiliation:
Institute for Materials Research, GKSS Research Centre, Max-Planck-Str., D-21502 Geesthacht, GERMANY
Helmut Clemens
Affiliation:
Institute for Materials Research, GKSS Research Centre, Max-Planck-Str., D-21502 Geesthacht, GERMANY
Michael Oehring
Affiliation:
Institute for Materials Research, GKSS Research Centre, Max-Planck-Str., D-21502 Geesthacht, GERMANY
Get access

Abstract

Intermetallic titanium aluminides are one of the few classes of emerging materials that have the potential to be used in demanding high-temperature structural applications whenever specific strength and stiffness are of major concern. However, in order to effectively replace the heavier nickel-base superalloys currently in use, titanium aluminides must combine a wide range of mechanical property capabilities. Advanced alloy designs are tailored for strength, toughness, creep resistance, and environmental stability. Some of these concerns are addressed in the present paper through specific comments on the physical metallurgy and technology of gamma TiAl-base alloys. Particular emphasis is placed on recent developments of TiAl alloys with enhanced high-temperature capability.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kim, Y-W. and Dimiduk, D.M, Structural Intermetallics, eds. Nathal, M. V., Darolia, R., Liu, C. T., Martin, P. L., Miracle, D. B., Wagner, R., Yamaguchi, M., (TMS, Warrendale, PA, 1997), p. 531.Google Scholar
2. Gamma Titanium Aluminides 1999, eds. Kim, Y-W., Dimiduk, D. M., Loretto, M. H., (TMS, Warrendale, PA, 1999).Google Scholar
3. Appel, F. and Wagner, R., Mater. Sci. Eng. R22, 187268, 1998.Google Scholar
4. Yamaguchi, M., Inui, H., Itoh, K., Acta Mater. 48, 307 (2000).Google Scholar
5. Clemens, H., Kestler, H., Advanced Eng. Mater. 2, 551 (2000).Google Scholar
6. Christodoulou, J. A., Flower, H. M., Advanced Eng. Mater. 2, 631 (2000).Google Scholar
7. Dimiduk, D. M., Mater. Sci. Eng. A263, 281 (1999).Google Scholar
8. Yamaguchi, M. and Umakoshi, Y., Progress in Materials Science 34, 1148 (1990).Google Scholar
9. Hemker, K. J., Viguier, B. and Mills, M. J., Mater. Sci. Eng. A164, 391 (1993).Google Scholar
10. Hirth, J. P. and Lothe, J., Theory of Dislocations, 2nd edn. (Krieger Publishing, Malabor), (1992).Google Scholar
11. Appel, F., Christoph, U. and Wagner, R., Phil. Mag. A 72, 341 (1995).Google Scholar
12. Appel, F., Beaven, P. A. and Wagner, R., Acta Metall. Mater. 41, 1721 (1993).Google Scholar
13. Appel, F., Christoph, U. and Wagner, R., Interface Control of Electrical, Chemical and Mechanical Properties, eds. Murarka, S. P., Rose, K., Ohmi, T., and Seidel, T., Mater. Res. Soc. Symp. Proc. (MRS, Pittsburgh, PA, 1994), Vol. 318, p. 691.Google Scholar
14. Appel, F. and Christoph, U., Intermetallics 7, 1273 (1999).Google Scholar
15. Appel, F., in Advances in Twinning, eds. Ankem, S. and Pande, C. S. (TMS, Warrendale, PA, 1999), pp. 171186.Google Scholar
16. Yoo, M. H., Fu, C. L., Lee, J.K., Twinning in Advanced Materials (TMS, Warrendale, PA, 1994), p. 97.Google Scholar
17. Yoo, M. H., Fu, C. L., Metall. Trans. A, 29A, 49 (1998).Google Scholar
18. Schöck, G., Phys. Stat. Sol. 8, 499 (1965).Google Scholar
19. Evans, A. G. and Rawlings, R. W., Phys. Stat. Sol. 34, 9 (1969).Google Scholar
20. Appel, F., Lorenz, U., Oehring, M., Sparka, U. and Wagner, R., Mater. Sci. Eng. A233, 1 (1997).Google Scholar
21. Paul, J. D. H., Appel, F. and Wagner, R., Acta Mater. 46, 1075 (1998).Google Scholar
22. Morris, M. A., Lipe, T. and Morris, D. G., Scripta Mater. 34, 1337 (1996).Google Scholar
23. Christoph, U., Appel, F. and Wagner, R., High-Temperature Ordered Intermetallics VII, eds. Koch, C.C., Liu, C.T., Stoloff, N.S., Wanner, A., Mater. Res. Soc. Symp. Proc. (MRS, Pittsburgh, PA, 1997), Vol. 460, p. 77.Google Scholar
24. Christoph, U., Appel, F., this volume.Google Scholar
25. Kroll, S., Mehrer, H., Stolwijk, N., Herzig, Ch., Rosenkranz, R. and Frommeyer, G., Z. Metallkunde 83, 8 (1992).Google Scholar
26. Kad, B. K. and Fraser, H. L., Phil. Mag. A, 69, 689 (1994).Google Scholar
27. Beddoes, J., Wallace, W. and Zhao, L., International Materials Reviews 40, 197 (1995).Google Scholar
28. Parthasaraty, T.A., Mendiratta, M.G. and Dimiduk, D.M., Scripta Mater. 37, 315 (1997).Google Scholar
29. Oehring, M., Ennis, P.J., Appel, F. and Wagner, R., High-Temperature Ordered Intermetallics VII, Mater. Res. Soc. Symp. Proc. (MRS, Pittsburgh, PA 1997), Vol. 460, p. 257.Google Scholar
30. Oehring, M., Appel, F., Ennis, P. J. and Wagner, R., Intermetallics 7, 335 (1999).Google Scholar
31. Appel, F., Oehring, M. and Ennis, P. J., Gamma Titanium Aluminides 1999, eds. Kim, Y.-W., Dimiduk, D. M., Loretto, M. H. (TMS, Warrendale, PA, 1999), p.603.Google Scholar
32. Appel, F. and Wagner, R., Atomic Resolution Microscopy of Surfaces and Interfaces ed. Smith, D.J., Mater. Res. Soc. Symp. Proc. (MRS, Pittsburgh, PA, 1997), Vol. 466, p. 145.Google Scholar
33. Huang, S.-C., Structural Intermetallics, eds. Darolia, R., Lewandowski, J. J., Liu, C. T., Martin, P. L., Miracle, D. B., Nathal, M. V. (TMS, Warrendale, PA, 1993), p. 299.Google Scholar
34. Chen, G., Zhang, W., Wang, Y., Wang, J. and Sun, Z., Structural Intermetallics, eds. Darolia, R., Lewandowski, J. J., Liu, C. T., Martin, P. L., Miracle, D. B., Nathal, M. V. (TMS, Warrendale, PA, 1993), p. 319.Google Scholar
35. Nickel, H., Zheng, N., Elschner, A. and Quadakkers, W., Microchim. Acta 119, 846 (1995).Google Scholar
36. Singheiser, L., Quadakkers, W.J. and Shemet, V., Gamma Titanium Aluminides 1999, eds. Kim, Y-W., Dimiduk, D. M., Loretto, M. H. (TMS, Warrendale, PA, 1999), p. 743.Google Scholar
37. Mohandas, E. and Beaven, P. A., Scripta Metall. Mater. 25, 2023 (1991).Google Scholar
38. Rossouw, C. J., Forwood, C. T., Gibson, M. A. and Miller, P. R., Phil. Mag. A 74, 77 (1996).Google Scholar
39. Appel, F., Lorenz, U., Paul, J.D.H. and Oehring, M., Gamma Titanium Aluminides 1999, eds. Kim, Y.-W., Dimiduk, D. M., Loretto, M. H. (TMS, Warrendale, PA, 1999), p. 381.Google Scholar
40. Tian, W.H. and Nemoto, M., Gamma Titanium Aluminides, eds. Kim, Y-W., Wagner, R. and Yamaguchi, M. (TMS, Warrendale, PA, 1995), p. 689.Google Scholar
41. Christoph, U., Appel, F. and Wagner, R., Mater. Sci. Eng. A239–240, 39 (1997).Google Scholar
42. McQuay, P., Sikka, V.K., Intermetallic Compounds, Vol. 3, Progress, eds. Westbrook, J.H., Fleischer, R.L. (J. Wiley, Chicester, 2001), in press.Google Scholar
43. Appel, F., Brossmann, U., Christoph, U., Eggert, S., Janschek, P., Lorenz, U., Müllauer, J., Oehring, M., Paul, J. D. H., Adv. Eng. Mater. 2, 699 (2000).Google Scholar
44. Semiatin, S. L., Chesnutt, J. C., Austin, C., Seetharaman, V., Structural Intermetallics 1997, eds. Nathal, M. V., Darolia, R., Liu, C. T., Martin, P. L., Miracle, D. B., Wagner, R., Yamaguchi, M. (TMS, Warrendale, PA, 1977), p. 263.Google Scholar
45. Koeppe, C., Bartels, A., Seeger, J. and Mecking, H., Metall. Trans. 24A, 1795 (1993).Google Scholar
46. Imayev, R. M., Salishchev, G. A., Imayev, V. M., Shagiev, M. R., Kuznetsov, A. V., Appel, F., Oehring, M., Senkov, O. N., Froes, F. H., Gamma Titanium Aluminides 1999, eds. Kim, Y-W., Dimiduk, D. M., Loretto, M. H. (TMS, Warrendale, PA, 1999), p. 565.Google Scholar
47. Kim, Y-W., Acta Metall. Mater. 40, 1121 (1992).Google Scholar
48. Imayev, R.M., Imayev, V.M. and Salishchev, G.A., J. Mater. Sci. 27, 4465 (1992).Google Scholar
49. Martin, P.L., Rhodes, C.G. and McQuay, P.A., Structural Intermetallics, eds. Darolia, R., Lewandowski, J.J., Liu, C.T., Martin, P.L., Miracle, D.B., and Nathal, M.V. (TMS, Warrendale, PA, 1993), p. 177.Google Scholar
50. Clemens, H., Schretter, P., Wurzwallner, K., Bartels, A. and Koeppe, C., Structural Intermetallics, eds. Darolia, R., Lewandowski, J.J., Liu, C.T., Martin, P.L., Miracle, D.B., and Nathal, M.V. (TMS, Warrendale, PA, 1993), p. 205.Google Scholar
51. Liu, C.T., Maziasz, P.J., Clemens, D.R., Schneibel, J.H., Sikka, V.K., Nieh, T.G., Wright, J. and Walker, L.R., Gamma Titanium Aluminides, eds: Kim, Y-W. Wagner, R., Yamaguchi, M. (TMS, Warrendale, PA, 1995), p. 679.Google Scholar
52. Clemens, H., Kestler, H., Eberhardt, N., Knabl, W., Gamma Titanium Aluminides 1999, eds. Kim, Y-W., Dimiduk, D. M., Loretto, M. H. (TMS, Warrendale, PA, 1999), p. 209.Google Scholar
53. Oehring, M., Lorenz, U., Niefanger, R., Christoph, U., Appel, F., Wagner, R., Clemens, H. and Eberhardt, N., Gamma Titanium Aluminides 1999, eds. Kim, Y-W., Dimiduk, D. M., Loretto, M. H. (TMS, Warrendale, PA, 1999), p. 439.Google Scholar
54. Semiatin, S.L. and Seetharaman, V., Scripta Metall. Mater. 31, 1203 (1994).Google Scholar
55. Of patent application by Appel, F., Lorenz, U., Oehring, M. and Wagner, R., DE 1974257A1, FR Germany.Google Scholar
56. Clemens, H., Z. Metallkde. 90, 569 (1999).Google Scholar
57. Dimiduk, D. M., Hazzledine, P. M., Parthasarathy, T. A., Seshagiri, S., Mendiratta, M. G., Metall. Trans. A, 29 (1998), 37.Google Scholar