No CrossRef data available.
Article contents
Real-Time Studies of Laser Oxidation of Copper: Characteristics of an Optical Heat Source
Published online by Cambridge University Press: 28 February 2011
Abstract
Oxidation of copper films is carried out using a cw argon ion laser. Time-resolved reflectance measurements during the reaction are performed at probe wavelengths of 632.8 and 514.5 nm. Strong temporal variations in reflectance are observed, and are attributed to interference within the growing oxide film. Measurements carried out as a function of laser power are complemented by Auger electron and scanning electron microscopy. A theoretical model of the system has been developed which treats its optical and thermal properties and the film growth process in an integrated way. The calculations highlight the intimate connection between the time dependence of the optical properties of the metal-metal oxide system and the film growth rate. The highly non-isothermal conditions which prevail account for the rapid rate of oxidation relative to furnace oxidation. Although both laser and furnace oxidation are thermal processes which obey a parabolic rate law, preliminary oxygen pressure dependence data indicate that they may not have the same rate determining step.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 1987