Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T02:33:50.305Z Has data issue: false hasContentIssue false

Reactive Ion Etching of III-V Semiconductors Using Hydrogenated Chlorofluorocarbon Mixtures

Published online by Cambridge University Press:  26 February 2011

S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
W. S. Hobson
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
U. K. Chakrabarti
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
G. E. Derkits
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
A. P. Perley
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

There are two basic gas chemistries used for dry etching of III-V semiconductors. The most common discharges contain chlorine, but these generally give rise to somewhat rough surface morphologies for In-containing compounds. More recently methane/hydrogen mixtures have been demonstrated to give low rate, smooth etching of In-based materials. In this work we describe the use of gas mixtures containing both CH and CI species. The hydrochlorofluorocarbons CHCl2F and CHCIF2 with O2 or H2 addition were used to reactively ion etch GaAs, InP, AlGaAs, GaSb, InGaAs and AlInAs as a function of etch time, plasma power density, pressure and gas composition. At moderate power densities (0.56 W · cm−2) the etch rates are in the range 125 Å · min−1 (AlInAs) to 1000 A · min−1 (GaAs). All of the materials exhibit smooth surface morphologies over a wide range of RIE parameters and there is no significant lattice disorder introduced for low power RIE as evidenced by PL and diode I-V measurements. Thin (≤40 Å) surface residue layers of CI (3–9 at. %) and F(≤3 at. %) for all materials except AlInAs are present after dry etching, but these can be removed by simple solvent cleaning.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Flamm, D. L. and Donnelly, V. M., Plamsa Chem. Plasma Proc. 1, 31 (1981).Google Scholar
2. Hu, E. L. and Howard, R. E., Appl. Phys. Lett. 37, 1022 (1980).Google Scholar
3. Klinger, R. E. and Green, J. E., Appl. Phys. Lett., 38, 620 (1981).Google Scholar
4. Hikosaka, K., Mimura, T. and Joshin, K., Jpn. J. Appl. Phys., 20, L8947 (1981).Google Scholar
5. Seabaugh, A., J. Vac. Sci. Technol., B6, 77 (1988).Google Scholar
6. Seaward, K. L., Moll, N. J., Coulman, D. J. and Stickle, W. F., J. Appl. Phys., 61, 2358 (1987).Google Scholar
7. Knoedler, C. M. and Keuch, T. F., J. Vac. Sci. Technol. B4, 1233 (1986).Google Scholar
8. Randall, J. N., Reed, M. A., Matyi, R. J. and Moore, T. M., J. Vac. Sci. Technol, B6, 1861 (1988).Google Scholar
9. Seaward, K. L., Moll, N. J. and Stickle, W. F., J. Vac. Sci. Technol., B6, 1645 (1988).Google Scholar
10. Knoefler, C. M., Osterling, L. and Shtrikman, H., J. Vac. Sci. Technol., B6 1573 (1988).Google Scholar