Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T21:08:06.778Z Has data issue: false hasContentIssue false

Reactive Growth and Properties of Epitaxial Fe-Mg-O Spinel Films on (100) MgO

Published online by Cambridge University Press:  15 February 2011

S. Senz
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, D-06120 Halle (Saale), Germany, [email protected]
A. Graff
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, D-06120 Halle (Saale), Germany, [email protected]
C. Teichert
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, D-06120 Halle (Saale), Germany, [email protected]
M. Zimnol
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, D-06120 Halle (Saale), Germany, [email protected]
H. Sieber
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, D-06120 Halle (Saale), Germany, [email protected]
S. K. De
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, D-06120 Halle (Saale), Germany, [email protected]
H. P. Oepen
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, D-06120 Halle (Saale), Germany, [email protected]
D. Hesse
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, D-06120 Halle (Saale), Germany, [email protected]
J. Kirschner
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, D-06120 Halle (Saale), Germany, [email protected]
U. M. Gösele
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, D-06120 Halle (Saale), Germany, [email protected]
Get access

Abstract

Epitaxial Mg-Fe-O spinel thin films were prepared by solid state reactions between MgO(lOO) substrates and thin films or vapors of iron oxide. Iron or iron oxide was deposited by electron beam evaporation in an oxygen background pressure onto a heated MgO crystal. The formation of MgFe2O4 at high temperatures proceeds via cation counter-diffusion in the fixed oxygen sublattice. Depending on substrate temperature, oxygen partial pressure and target material, epitaxial spinel films of different composition and magnetic properties were obtained. Crystal structure, composition and sub-micron morphology were investigated by RBS, XRD, TEM/SAED and EDX. Magnetic hysteresis loops were recorded at room temperature using the magneto-optic Kerr effect. Thickness interference fringes observed by XRD confirm the growth of smooth films. The main feature found in TEM plane view samples is a network of cation antiphase boundaries. The film composition measured by RBS varied from Fe2+ɛO3 films deposited at 340 °C substrate temperature to a solid solution of Fe2+E03 and MgFe2O4 at 500 °C to MgFe2O4 above 800 °C. EDX line-scans show a single phase MgFe2O4 spinel for a substrate temperature of 850 °C, without variation of composition with position or depth. At substrate temperatures higher than 800 °C Fe2+ was additionally dissolved in the MgO substrate, forming a FexMg1-xO solid solution.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dieckmann, R., Ber. Bunsenges. Phys. Chem. 86, 112 (1982).Google Scholar
2. Annersten, H. and Hafner, S. S., Z. Kristallogr. 137, 321 (1973).Google Scholar
3. Goto, Y., Jpn. J. Appl. Phys. 3, 741 (1964).Google Scholar
4. Lind, D. M., Berry, S. D., Chern, G., Mathias, H. and Testardi, L. R., Phys. Rev. B 45 (1992) 1838.Google Scholar
5. Margulies, D. T., Parker, F. T., Spada, F. E., Goldman, R. S., Li, J., Sinclair, R. and Berkowiz, A. E., Phys. Rev. B 53, 9175 (1996).Google Scholar
6. Gomi, M. and Toyoshima, H., Jpn. J. Appl. Phys. 35, L 544 (1996).Google Scholar
7. Babkin, E. V., Koval, K. P. and Pyn'ko, V. G., Soviet Physics-JEPT 73, 321 (1991).Google Scholar
8. Zimnol, M., Graff, A., Sieber, H., Senz, S., Schmidt, S., Mattheis, R. and Hesse, D., Proc. XlIIth Int. Symp. on the Reactivity of Solids, Hamburg/Germany, Sept. 8–12, 1996, submitted to Solid State IonicsGoogle Scholar
9. Mozzi, R. L. and Paladino, A. E., J. Chem. Phys. 39, 435 (1963).Google Scholar
10. Trestman-Matts, A., Dorris, S. E. and Mason, T. O., J. Am. Ceram. Soc. 67, 69 (1984).Google Scholar
11. Jay, A. H. and Andrews, K. W., Nature 154, 16 (1944).Google Scholar