Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-02T23:11:36.989Z Has data issue: false hasContentIssue false

Reactions at Solid Interfaces

Published online by Cambridge University Press:  25 February 2011

R. Sinclair
Affiliation:
Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305
D. H. Ko
Affiliation:
Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305
T. J. Konno
Affiliation:
Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305
T. P. Nolan
Affiliation:
Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305
Get access

Abstract

This article discusses some of the changes which can occur at interfaces due to reaction or annealing. For chemically unstable interfaces, the atomic recombinations result in formation of new phases, which can even be amorphous in the initial stages. When no further chemical evolution takes place, physical rearrangement can have important consequences on the structure and properties. Examples are drawn from work on Ti-Si, Pt-GaAs, Ti-Si-O-N, Al-Si and TiSi2-Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Binary Alloy Phase Diagrams”, edited by Massalski, T.B., ASM, Metals Park, Ohio 44073 (1986).Google Scholar
2. d'Heurle, F.M. and Gas, P., J. Mater. Res. 1, 205 (1986).CrossRefGoogle Scholar
3. Tu, K.N., Ottaviani, G., Thompson, R.D. and Mayer, J.W., J. Appl. Phys. 53, 4406 (1982).CrossRefGoogle Scholar
4. Schwarz, R.B. and Johnson, W.L., Phys. Rev. Lett. 51, 415 (1983).Google Scholar
5. Johnson, W.L., Prog. Mater. Sci. 30, 81 (1986).Google Scholar
6. Clemens, B.M. and Sinclair, R., Mats. Res. Soc. Bull. 15 (2), 19 (1990).Google Scholar
7. Ogawa, S., Yoshida, T., Kouzaki, T. and Sinclair, R., J. Appl. Phys. 70, 827 (1991).Google Scholar
8. Steams, D.G., Steams, M.B., Cheng, Y., Stith, J.H. and Ceglio, N.M., J. Appl. Phys. 67, 2415 (1990).Google Scholar
9. Ko, D.H. and Sinclair, R., Mats. Res. Soc. Proc. 230, in press (1992).Google Scholar
10. Ko, D.H. and Sinclair, R., J. Appl. Phys., in press (1992).Google Scholar
11. Beyers, R., Kim, K.B. and Sinclair, R., J. Appl. Phys. 61, 2195 (1987).Google Scholar
12. Beyers, R., J. Appl. Phys. 66, 147 (1984).Google Scholar
13. Bhansali, A.S., Sinclair, R. and Morgan, A.E., J. Appl. Phys. 68, 2601 (1990).Google Scholar
14. Sinclair, R., Mater. Trans. Jpn. Inst. Met. 21, 628 (1990).Google Scholar
15. Bhansali, A.S., Raaijmakers, I.J.M.M., Burrows, B.J., Morgan, A.E. and Sinclair, R., J. Appl. Phys., in press (1992).Google Scholar
16. Konno, T.J. and Sinclair, R., Mats. Res. Soc. Proc. 230, in press (1992).Google Scholar
17. Herd, S., Chaudhari, P. and Brodsky, M.H., J. Non-Cryst. Solids 2, 209 (1972).Google Scholar
18. DSrolovitz, J. and Safran, S.A., J. Appl. Phys. 60, 247 (1986).Google Scholar
19. Miller, K.T., Lange, F.F. and Marshall, D.B., J. Mater. Res. 5, 151 (1990).CrossRefGoogle Scholar
20. Nolan, T.P., Beyers, R. and Sinclair, R., Mats. Res. Soc. Proc. 201, 95 (1992).Google Scholar
21. Nolan, T.P., Sinclair, R. and Beyers, R., J. Appl. Phys. 71, in press (1992).Google Scholar