Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T10:03:35.691Z Has data issue: false hasContentIssue false

Reaction Processing and Properties of Sic-To-Sic Joints

Published online by Cambridge University Press:  15 February 2011

B. H. Rabin
Affiliation:
Idaho National Engineering Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-2218
G. A. Moore
Affiliation:
Idaho National Engineering Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-2218
Get access

Abstract

Reaction processing methods have been developed for fabricating SiC-to-SiC joints that can be used in elevated temperature applications. Processing steps include tape casting thin sheet SiC+C interlayer precursors, clamping the tape between the ceramic parts, providing a source of Si adjacent to the joint, and heating above the melting point of Si in argon. Molten Si infiltrates the tape via capillary action forming a reaction bonded silicon carbide (RBSC) interlayer and simultaneously joining the ceramic parts. Four-point bending strength and fracture toughness of joined pressureless sintered α-SiC test specimens have been evaluated at room and elevated temperatures. At low temperatures the joint mechanical properties were comparable to those reported for bulk SiC, while at elevated temperatures the joint properties were characteristic of the RBSC interlayer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Moore, T. J., J. Amer. Ceram. Soc. 68 (6), C151 (1985).CrossRefGoogle Scholar
2. DeLeeuw, D., J. Amer. Ceram. Soc. 75 (3), 725 (1992).Google Scholar
3. Bates, C. H., et al., Amer. Ceram. Soc. Bull. 69 (3), 350 (1990).Google Scholar
4. Iseki, T., Arakawa, K. and Suzuki, H., J. Mater. Sci. Letters 15 1049 (1980).Google Scholar
5. Yajima, S., et al., Amer. Ceram. Soc. Bull. 60 (2), 253 (1981).Google Scholar
6. Gehris, A. P. Jr., M.S., New Mexico Institute of Mining and Technology, 1989.Google Scholar
7. Tamari, N., et al., Yogyo-Kyokai-Shi 94 (10), 1087 (1986).CrossRefGoogle Scholar
8. Morozumi, S., et al., 20 3976 (1985).CrossRefGoogle Scholar
9. Boadi, J. K., Yano, T. and Iseki, T., J. Mater. Sci. 22 2431 (1987).Google Scholar
10. McDermid, J. R. and Drew, R. A. L., J. Amer. Ceram. Soc. 74 (8), 1855 (1991).CrossRefGoogle Scholar
11. Rabin, B. H., J. Amer. Ceram. Soc. 75 (1), 131 (1992).Google Scholar
12. Iseki, T., Imai, M. and Suzuki, H., Yogyo-Kyokai-Shi 91 (6), 259 (1983).CrossRefGoogle Scholar
13. Rabin, B. H., Mater. Sci. Eng. A130 LI (1990).Google Scholar
14. Rabin, B. H. and Moore, G. A., ORNL/FMP-92/1 (Oak Ridge National Laboratory), 1992.Google Scholar
15. Rabin, B. H. and Moore, G. A., J. Mater. Synthesis and Proc. 1 (4), in press (1993).Google Scholar
16. Srawley, J. E. and Gross, B., in ASTM STP601, edited by Swedlow, J. L. and Williams, M. L. (ASTM, Philidelphia, 1976), p. 559.Google Scholar
17. Popper, P., in Special Ceramics, edited by (Heywood & Company, London, 1960), p. 209.Google Scholar
18. Forrest, C. W., Kennedy, P. and Shennan, J. V., in Special Ceramics 5, edited by Popper, P. (British Ceramic Research Association, Stoke-on-Trent, 1972), p. 99.Google Scholar
19. Hillig, W. B., et al., Amer. Ceram. Soc. Bull. 54 (12), 1054 (1975).Google Scholar
20. McLaren, J. R., Tappin, G. and Davidge, R. W., Proc. British Ceramic Soc. 20 259 (1972).Google Scholar
21. Trantina, G. C. and Mehan, R. L., J. Amer. Ceram. Soc. 60 (3–4), 177 (1977).Google Scholar
22. Sawyer, G. R. and Page, T. F., J. Mater. Sci. 13 885 (1978).Google Scholar
23. Ness, J. N. and Page, T. F., J. Mater. Sci. 21 (4), 1377 (1986).CrossRefGoogle Scholar
24. Dutta, S., J. Mater. Sci. 19 1307 (1984).CrossRefGoogle Scholar
25. Govila, R. K., J. Mater. Sci. 19 2111 (1984).CrossRefGoogle Scholar
26. Ghosh, A. K., et al., J. Amer. Ceram. Soc. 72 (2), 242 (1989).Google Scholar
27. Seshadri, S. G., Srinivasan, M. and Chia, K. Y., in Ceramic Transactions. Vol.2: Silicon Carbide ‘87, edited by Cawley, J. D. and Semler, C. E. (The American Ceramic Society, Westerville, OH, 1989), p. 215.Google Scholar
28. Charif, A. and Osterstock, F., Mater. Sci. Eng. B11 299 (1992).CrossRefGoogle Scholar
29. Evans, A. G. and Lange, F. F., J. Mater. Sci. 10 1659 (1975).CrossRefGoogle Scholar
30. McHenry, K. D. and Tressler, R. E., J. Amer. Ceram. Soc. 63 (3–4), 152 (1980).Google Scholar
31. Merkel, I. and Messerschmidt, U., Mater. Sci. Eng. A151 131 (1992).Google Scholar
32. Brede, M., Acta Metall. Mater. 41 (1), 211 (1993).CrossRefGoogle Scholar
33. Messner, R. P. and Chang, Y.-M., J. Amer. Ceram. Soc. 73 (5), 1193 (1990).CrossRefGoogle Scholar
34. Chang, Y.-M., Messner, R. P. and Terwilliger, C. D., Mater. Sci. Eng. A144 63 (1991).CrossRefGoogle Scholar