Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T23:35:05.392Z Has data issue: false hasContentIssue false

Rapid Prototyping of Plastic Micro Devices by Excimerlaser Ablation

Published online by Cambridge University Press:  17 March 2011

Thomas Klotzbuecher
Affiliation:
Institut fuer Mikrotechnik Mainz GmbH Carl-Zeiss-Str, 18-20, 55129 Mainz, Germany
Peyman Mirtaheri
Affiliation:
The National Hospital, The Interventional Center Sognvannsvn. 20, N-0027 Oslo, Norway University Of Oslo, Department of Physics P.O.Box 1048, N-0316 Oslo, Norway
Torsten Braune
Affiliation:
The National Hospital, The Interventional Center Sognvannsvn. 20, N-0027 Oslo, Norway
Get access

Abstract

Nowadays the application of micro devices in many fields like e.g. in the life sciences, chemistry and also optics strongly grows in importance. Micro structures often allow efficient processes with low resource consumption and the possibility of high integration. Typical examples are micro and nano titer plates for chemical screening or DNA chips for sequencing, micro mixers and reaction systems for synthesis on demand or micro optical elements like couplers for optical data transmission. Especially plastics are well suited for the cost effective large number fabrication, using high precision mould inserts with injection moulding or hot embossing. Since the micro devices become more and more complex (keywords: lab on a chip and micro total analysis systems, μ-TAS) the fabrication of mould inserts will be more expensive and time consuming. This is the reason why often methods of rapid prototyping are required for design qualification and functionality test purposes during the development. It will be demonstrated that Excimerlaser ablation is a well suited method for rapid prototyping of quasi-three-dimensional micro structures. Almost all polymers can be ablated by the UV laser radiation with very high accuracy, using mask projection techniques. Therefore, the choice of a suited polymer with adapted material properties like for e.g. chemical resistance, optical surface quality or bio-compatibility allows one to account for the requirements of the corresponding application. Moreover, the prototypes can easily be transformed into mould inserts for large number fabrication, using the Laser-LIGA technique. The corresponding technologies will be explained and demonstrated with the aid of several examples, especially taking into account the material aspects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Detemple, P., Ehrfeld, W., Freimuth, H., Pommersheim, R., Wagler, P., Microtechnology in modern health care, Medical Device Technology 11 (1998) 18 Google Scholar
2. Niggemann, M., Ehrfeld, W., Weber, L., Miniaturized plastic micro plates for applications in HTS, Microsystem Technol. 6 (1999) 2 S.4853 Google Scholar
3. Konrad, R., Ehrfeld, W., Hartmann, H.-J., Disposable electrophoresis chip for high throughput analysis of biomolecules, Proc. of the International Conference on Microreaction Technology 3 (IMRET 3), April 1999, Frankfurt Google Scholar
4. Rizvi, N., Microstructuring with Excimer Lasers, mstNews 1 (1999) 18 Google Scholar
5. Paatzsch, T., Smaglinski, I., Bauer, H.-D., Ehrfeld, W., Polymer waveguides for telecom, datacom and sensor applications, Miniaturized systems with microoptics and micromechanics III, Proc. SPIE 3276 (1998) 16 Google Scholar
6. Ehrfeld, W., Bauer, H.-D., Application of micro- and nanotechnologies for the fabrication of optical devices, Proc. SPIE 3276 (1998) 2 Google Scholar
7. Becker, E. W., Ehrfeld, W., Hagmann, P., Maner, A., Münchmeyer, D., Fabrication of microstructures with high aspect ratios and great structural hight by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process), Microelectron. Eng. 4 (1986) 35 Google Scholar
8. Weber, L., Ehrfeld, W., Mikroabformung-Verfahren, Werkzeuge, Anwendungen, Kunststoffe 88 (1998) 10 pp.17911802 Google Scholar
9. Domininghaus, H., Die Kunststoffe und ihre Eigenschaften, 5th edition, Springer-Verlag, Berlin, 1998 Google Scholar
10. Pham, D.T., Gault, R.S., A comparison of rapid prototyping technologies, Int. J.Machine Tools & Manufacture 38 (1998) 1257 Google Scholar
11. 3D Systems Praxis-Forum “Time-to-Market”, 11. November 1999, Darmstadt, Germany Google Scholar
12. Ikuta, K., Biomedical micro device fabricated by micro stereo lithography (ICH process) “Metabiotic device”-A synthetic approch for life science, 6th Int. Symp. on Micromachine and Human Science, 1995 IEE, pp. 6770 Google Scholar
13. Bertsch, A., Lorenz, H., Renaud, P., 3D microfabrication by combining microstereolithography and thick resist lithography, Sensors & Actuators 73 (1999) 14 Google Scholar
14. Goetzen, R., Rapid Prototyping und Rapid Manufacturing für Mikrobauteile, Proc. 1. Anwenderfachtagung Technologie-Transfer, Mikrosystemtechnik, Ultrapräzisionsfertigung, 30./31. March 2000, Dornbirn, Austria Google Scholar
15. Cord, T., Schillen, V., Einsatz von Rapid-Prototyping-Verfahren in der Mikrosystemtechnik, Proc. μ-Engineering 98', Stuttgart, September 1998, Germany Google Scholar
16. Srinivasan, R., Interaction of Laser Radiation with Organic Polymers, in Miller, J.C. (Ed.), Laser Ablation, Springer Series in Materials Science 28, Springer Verlag, Berlin, 1994 Google Scholar
17. Rabek, J.F., Photodegradation of Polymers, Springer-Verlag, Berlin, 1996 Google Scholar
18. Krishnan, A., Nassar, R., Rapid prototyping using Excimer laser microfabrication system, Proc. SPIE 3512 (1998) 374 Google Scholar
19. Klotzbücher, T., Popp, M., Braune, T., Haase, J., Gaudron, A., Smaglinski, I., Paatzsch, T., Bauer, H.-D., Ehrfeld, W., Custom specific fabrication of integrated optical devices by excimer laser ablation of polymers, Proc. SPIE Vol. 3933 (2000) 290 Google Scholar
20. Klotzbücher, T., Braune, T., Sigloch, S., Hoβfeld, J., Neumeier, M., Bauer, Hans-Dieter, Ehrfeld, W., Polymer Microsystems by Excimerlaserablation: From Rapid Prototyping to Large Number Fabrication, Proc. SPIE Vol. 4274 (2001) 307 Google Scholar
21. Arnold, J., Dasbach, U., Ehrfeld, W., Hesch, K., Löwe, H., Combination of Excimer laser micromachining and replication processes suited for large scale production, Appl. Surf. Sci. 86 (1995) 251 Google Scholar
22. Arnold, J., Ehrfeld, W., Hesch, K., Möbius, H., Kostengünstige Serienfertigung von Mikrobauteilen durch Laser-LIGA, Feinwerktechnik, Mikrotechnik, Messtechnik (F&M) 103 (1995) 48 Google Scholar
23. Hanemann, T., Pfleging, W., Rapid Prototyping in der Mikrosystemtechnik, Proc. 5. Chemitzer Fachtagung für Mikrosystemtechnik und Mikroelektronik, Chemnitz, 5./6. October 1999 Google Scholar
24. Gower, M.C., Rumsby, P.T., Excimer laser projector for material processing application, Laser Ablation of Electronic Materials (Ed. Fogarassy, E., Lazare, S.) EMRS Monographs, Vol. 4, North Holland, Amsterdam, 1992 Google Scholar
25. Bäuerle, D., Laser Processing and Chemistry, 3rd edition, Springer-Verlag, Berlin, 2000 Google Scholar
26. Petty, G.H., Sauerbrey, R., Pulsed ultraviolet absorption, Appl. Phys. A 56 (1993) 51 Google Scholar
27. Boyd, I.W., Laser Processing of Thin Films and Microstructures, Springer-Verlag, Berlin, 1987 Google Scholar
28. Hügel, H., Schittenhelm, H., Jasper, K., Callies, G., Berger, P.: Structuring with excimer lasers-experimental and theoretical investigations on quality and efficiency, J. Laser Appl. 10 (1998) 255 Google Scholar
29. Sabbert, D., Landsiedel, J., Bauer, H.-D., Ehrfeld, W., ArF-eximer laser ablation experiments on Cycloolefin Copolymer (COC), Appl. Surf. Sci. 150 (1999) 185 Google Scholar