Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T20:38:56.839Z Has data issue: false hasContentIssue false

Rapid Omnidirectional Compaction of Y2O3 Stabilized Tetragonal Zirconia

Published online by Cambridge University Press:  21 February 2011

Alexander Pechenik
Affiliation:
University of California, Department of Material Science and Engineering, Los Angeles, CA 90024
Aleksander J. Pyzik
Affiliation:
The Dow Chemical Company, Central Research, 1776 Building, Midland, MI 48674
Donald R. Beaman
Affiliation:
The Dow Chemical Company, Michigan Applied Science and Technology Laboratory, 1897 Building, Midland, MI 48667
Get access

Abstract

The Rapid Omnidirectional Compaction (ROC) technique has been applied successfully to the densification of TZP (3 mole % yttria) ceramics at 1260°C. The combination of high pressure (830 MPa) and temperature results in the plastic deformation of the ceramic particles. The extent of deformation, and consequently, the ROCing temperature, can be determined by using hot hardness of the ceramic material as an approximation of the ceramic's yield stress. The materials ROCed at 1260°C are characterized by a grain size of 0.15 gim, a flexure strength of 1300 MPa, a hardness of 1340 kg/mm2, and a fracture toughness of 5.0 MPa m1/2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lankford, J., in Advanced Structural Ceramics, ed. by Becher, P.F. and others, Materials Research Soc. Proc.,78, 61, (1986).Google Scholar
2. Toyo Soda Manufacturing Co., LTD, Technical Bulletin, Z-051.Google Scholar
3. Claussen, N., in Proc. 2nd Int. Conf. Sci. Tech. Zirconia, ed.by Claussen, N., Ruhle, M., Heuer, A.H. (Am. Ceram. Soc., Columbus, Ohio), 325–51, (1984).Google Scholar
4. Lanteri, V., Chaim, R., Heuer, A.H., J. Am. Ceram; Soc., 69, 10, C 258–61, (1986).Google Scholar
5. Kelto, C.A., Rapid Omnidirectional Compaction, in Metals Handbook,7,(Am. Soc.For Metals, Metals Park, Ohio,1984), p.542.Google Scholar
6. Timm, E.E., Conf. Proc.Advances in Hard Materials Production 88, England, MPR Publ.Serv. (In press).Google Scholar
7. Pyzik, A.J., Pechenik, A., Ceram. Eng. Sci. Proc., 9, 7–8, 965–74, (1988).Google Scholar
8. Pyzik, A.J., presented at the 2nd Int.Conf. on Ceram. Powder Processing Science, Berchtesgaden, FRG, 1988, (In press).Google Scholar
9. Garrie, R.C., Nicholson, P.S., J. Am. Ceram. Soc., 55, 6, 303–5, (1972).Google Scholar
10. Kelto, C.A., Timm, E.E., Pyzik, A.J., in Annu.Rev.Mater.Sci.,19, 527550, (1989).Google Scholar
11. Exner, H.E., Trans. Metall. Soc. AIME, 245,677,(1969).Google Scholar
12. Niihara, K., Morena, R., Hasselman, D.P.H., J. Mat. Sci. Letters,1,1316,(1982).Google Scholar
13. Barker, L.M., Int.J.of Fracture,15,6,515,(1979).Google Scholar
14. Helle, A.S., Esterling, K.E., Ashby, M.F., Acta Metall.,33, 2163–74,(1985).Google Scholar
15. Adair, H.J., Wills, R.R., Linse, V.D., in Mat. Sci. Research, ed. by Davis, R.F., Palmour, H. III, Porter, R.L., 17, 639–55, (1984).Google Scholar
16. Buntushkin, V.P., Romanovich, I.V., Timofeeva, N.I., Neorg. Mater., 1, 9,1071–1138.Google Scholar