Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T09:57:07.006Z Has data issue: false hasContentIssue false

Rapid Large Area Annealing of Ion-Implanted Si With Incoherent Light

Published online by Cambridge University Press:  15 February 2011

D. J. Lischner
Affiliation:
Bell Laboratories, Allentown, Pennsylvania, 18103, USA
G. K. Celler
Affiliation:
Bell Laboratories, Murray Hill, New Jersey 07974, USA
Get access

Abstract

We report an extremely rapid and efficient method for annealing ion-implanted wafers by transient irradiation with tungsten halogen lamps. Several 3-inch wafers are held in an inert atmosphere, thermally isolated from the water cooled base and separated by a quartz plate from the air cooled lamps, which can deliver in excess of 100 kW of power. Heating of the wafers up to 1200°C, or even to the melting point of Si, occurs within seconds. The cooling process can be equally rapid. The temperature is continuously monitored with a pyrometer. The radiative flux in the chamber is uniform within 5% over at least 500 cm 2; however, at temperatures 1200 °C radiative losses at the wafer perimeter may cause crystalline slip if proper countermeasures are not taken.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gat, A., Gibbons, J. F., Magee, T. J., Peng, J., Deline, V. R., Williams, P., Evans, C. A., Appl. Phys. Lett. 32, 276 (1978).Google Scholar
2. Williams, J. S., Brown, W. L., Leamy, H. J., Poate, J. M., Rodgers, J. M., Rousseau, D., Rozgonyi, G. A., Shelnutt, J. A., Sheng, T. T., Appl. Phys. Lett. 33, 542 (1978).Google Scholar
3. Benton, J. L., Kimerling, L. C., Miller, G. L., Robinson, D. A. H., and Celler, G. K., in Laser-Solid Interactions and Laser Processing – 1978, Ferris, S. D., Leamy, H. J., and Poate, J. M., eds. (Amer. Inst. Phys., N. Y. 1979), p. 543.Google Scholar
4. Benton, J. L., Celler, G. K., Jacobson, D. C., Kimerling, L. C., Lischner, D. J., Miller, G. L., and Robinson, Mc.D., in Laser and Electron Beam Interactions with Solids, Appleton, B. R. and Celler, G. K., eds. (North Holland, New York 1982)Google Scholar
5. Nishiyama, K., Arai, M., and Watanabe, N., Jap. J. Appl. Phys. 19, L563 (1980).Google Scholar
6. Gibbons, J. F., in Laser and Electron Beam Solid Interactions and Laser Processing Gibbons, J. F., Hess, L. D., and Sigmon, T. W., eds.,(North Holland, N. Y. 1981), p. 449.Google Scholar
7. Powell, R. A., Yep, T. O., and Fulks, R. T., Appl. Phys. Lett. 39, 150 (1981).Google Scholar
8. Gat, A., IEEE Electr. Device Lett. EDL–2, 85 (1981).Google Scholar
9. Fulks, R. T., Russo, C. J., Hanley, P. R., and Kamins, T. I. Appl.Phys. Lett. 39, 604 (1981).CrossRefGoogle Scholar
10. Harrison, H. B., Grigg, M., Short, K. T., Williams, J. S., and Zylewicz, A. in Laser and Electron Beam Interactions with Solids, Appleton, B. R. and Celler, G. K., eds. (North Holland, New York 1982)Google Scholar
11. Built for another application with some technical support from General Electric Co., Syracuse, N.Y. Google Scholar
12. Cline, H. and Anthony, T., J. Appl. Phys. 49, 2412 (1978);CrossRefGoogle Scholar
also U. S. patents 4,168,992; 4,170,490; 4,035,199.Google Scholar