Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T07:09:50.248Z Has data issue: false hasContentIssue false

Rapid Annealing of GaAs: Uniformity and Temperature Dependence of Activation

Published online by Cambridge University Press:  26 February 2011

K. D. Cummings
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
S. J. Pearton
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
G. P. Vella-Coleiro
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
Get access

Abstract

Scanning microwave photoconductance, capacitance-voltage profiling and Hall effect measurements were used to investigate the uniformity of activation of Si, Be and Mg implanted 2″ and 3″ diameter, semi-insulating GaAs substrates after rapid thermal annealing in a commercial furnace. The results indicate that carrier lifetimes and mobilities for low dose (3−4 × 1012 cm−2) implants and carrier densities for high dose (1× 1015 cm−2) implants are comparable or superior in rapidly annealed substrates to those obtained in thermally annealed implanted layers. The uniformity of these parameters is not significantly different for wafers annealed by either method. The temperature dependence of damage removal and carrier activation in the implanted regions during both furnace and transient annealing was also investigated, and demonstrates that the microwave photoconductance technique gives results for donor implantation correlating well with conventional backscattering and electrical measurements respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Davies, D. E., Nucl. Instr. Meth. B718, 387 (1985).Google Scholar
2. Pearton, S. J. and Cummings, K. D., J. Appl. Phys. 58, 1500 (1985)CrossRefGoogle Scholar
3. Pearton, S. J., Cummings, K. D. and Vella-Coleiro, G. P., J. Electrochem. Soc. (in press).Google Scholar
4. Blunt, R. T., Lamb, M. S. M. and Szweda, R., Appl. Phys. Let. 47, 304 (1985).CrossRefGoogle Scholar
5. Implants performed by I. I. Co., Santa Clara, CA 95051.Google Scholar
6. A. G. Associates, Palo Alto, CA 94303.Google Scholar
7. Hasegawa, H., Ohno, H., Shimizo, H. and Seki, S., J. Electron Mater. 13, 931 (1984).CrossRefGoogle Scholar
8. Hasegawa, H., Ohno, H., Seki, S. and Sawachi, S., GaAs I. C. Symp. Tech. Digest, 1984, pg. 41–44.Google Scholar
9. Pearton, S. J., Hull, R., Jacobson, D. C., Poate, J. M. and Williams, J. S. (unpublished).Google Scholar
10. Hiramoto, T., Saito, T. and Ikoma, T., Jap. J. Appl. Phys. 24, L193 (1985).CrossRefGoogle Scholar
11. Barrett, N. J., Grange, J. D., Sealy, B. J. and Stephens, K. G., J. Appl. Phys. 56, 3503 (1984).CrossRefGoogle Scholar
12. Kular, S. S., Sealy, B. J., Ono, Y. and Stephens, K. G., Solid State Electron. 27, 83 (1984).Google Scholar
13. Williams, J. S., in Laser Annealing of Semiconductors, edited by Poate, J. M. and Mayer, J. W. (Academic Press, New York, 1982) p. 383.CrossRefGoogle Scholar