Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T05:02:32.042Z Has data issue: false hasContentIssue false

Raman Studies of Fluorine-Intercalated Carbon Fibers

Published online by Cambridge University Press:  26 February 2011

A. M. Rao
Affiliation:
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
A. W. P. Fung
Affiliation:
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
M. S. Dresselhaus
Affiliation:
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
G. Dresselhaus
Affiliation:
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
M. Endo
Affiliation:
Shinshu University, Nagano 380, Japan
T. Nakajimat
Affiliation:
Kyoto University, Sakyo-ku, Kyoto 606, Japan
Get access

Abstract

We report Raman scattering measurements on fluorine-intercalated graphite fibers (CxF) for stoichiometries x =7.8, 4.5 and 2.9. Lorentzian fits to our Raman lineshapes indicate the presence of two lines around 1600 cm−1 and a broad line around 1355 cm−1 . The 1355 cm−1 line is the disorder-induced graphite line and the ratio of the integrated intensity of this line to that of the 1600 cm−1 doublet (R) provides a measure of the intercalationinduced disorder in the CjF fibers. Both TEM and Raman studies indicate the presence of unintercalated graphitic regions in the CxF fiber. The inverse relation between the average crystal planar domain size La, and the Raman intensity ratio R yields La. ,˜52Å for C7.8F fibers and La. , ˜40Å for C4.5,F and C2.9F fibers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Piraux, L., Bayot, V., Issi, J. P., Dresselhaus, M.S., Endo, M. and Nakajima, T., Phys.Rev. B 41, 4961 (1990).Google Scholar
2. di Vittorio, S. L., Piraux, L., Issi, J. P., Dresselhaus, M. S., Endo, M., and Nakajima, T..Phys. Rev. B (submitted).Google Scholar
3. Dresselhaus, M. S. and Dresselhaus, G., Light Scattering in Solids III, 51, 3, (1982)Google Scholar
3a.edited by Cardona, M. and Güntherodt, G., Springer-Verlag Berlin, Topics in Applied Physics.Google Scholar
4. Rao, A. M., Fung, A. W. P., Dresselhaus, M. S., Dresselhaus, G., Endo, M., and Nakajima, T., (in preparation).Google Scholar
5. Nakajima, T., Watanabe, N., Kameda, I. and Endo, M., Carbon 20, 343 (1986).Google Scholar
6. Ohana, I., Palchan, I., Yacoby, Y., and Davidov, D., Solid State Commun. 56, 505(1985);Google Scholar
6a. Ohana, I., Palchan, I., Yacoby, Y., Davidov, D. and Selig, H., Phys. Rev. B 38,12627 (1988).Google Scholar
7. Knight, D. S. and White, W. B., J. Mater. Res., 4, 385 (1989).Google Scholar
8. Mallouk, T., Hawkins, B.L., Conrad, M.P., Zilm, K., Maciel, G. E. and Bartlett, N., Phil.Trans. R. Soc. Lond. A 314, 179 (1985).Google Scholar
9. Pietronero, L., Strässler, S., and Zeller, H. R., Phys. Rev. Lett. 11, 763 (1978).CrossRefGoogle Scholar
10. Chan, C. T., Kamitakahara, W. A., Ho, K. M. and Eklund, P. C., Phys. Rev. Lett. 58, 1528 (1987);Google Scholar
10a. Chan, C. T., Ho, K. M., and Kamitakahara, W. A., Phys. Rev. B 36,3499 (1987).Google Scholar