Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T04:56:37.015Z Has data issue: false hasContentIssue false

Raman and FTIR Study of Neutron Irradiated CVD Diamond

Published online by Cambridge University Press:  10 February 2011

S. Khasawinah
Affiliation:
Nuclear Engineering Department, University of Missouri, Columbia, MO 65211 USA
G. Popovici
Affiliation:
Nuclear Engineering Department, University of Missouri, Columbia, MO 65211 USA
M. A. Prelas
Affiliation:
Nuclear Engineering Department, University of Missouri, Columbia, MO 65211 USA
M. Mccormick
Affiliation:
Nuclear Engineering Department, University of Missouri, Columbia, MO 65211 USA
S. K. Loyalka
Affiliation:
Nuclear Engineering Department, University of Missouri, Columbia, MO 65211 USA
G. Manning
Affiliation:
Nuclear Engineering Department, University of Missouri, Columbia, MO 65211 USA
J. Farmer
Affiliation:
Research Reactor, University of Missouri, Columbia, MO 65211, USA
H. W. White
Affiliation:
Department of Physics, University of Missouri, Columbia, MO 65211, USA
F. Shahedi Pour
Affiliation:
Department of Physics, University of Missouri, Columbia, MO 65211, USA
Get access

Abstract

Undoped and 10B doped diamond films were neutron irradiated at a moderately high fluence level (thermal neutron fluence of 1.3 × 1020 n/cm2 and a fast neutron (E> 0.1 MeV) fluence of 1.6 × 1020 n/cm2). The unirradiated, irradiated, irradiated and annealed samples were studied using Fourier Transform Infrared (FTIR) and Raman spectroscopies. A dependence of radiation induced stress on the initial boron concentration was observed. The radiation induced stress was lower for the undoped samples. Correlations between FTIR and Raman data were found. The radiation damage was removed after annealing, as measured by Raman and FTIR spectroscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Prins, J. F., Mater Sci. Reports 7, 271 (1992).Google Scholar
2. Sellshop, J. P. F., The Properties Of Diamond, ed. Field, J. E. (Academic Press, London, 1979), pp. 108159.Google Scholar
3. Collins, A. T., Physica B 185, 284 (1993).Google Scholar
4. Mainwood, A., L, L. Allers, Collins, A.T., Hassard, J. F., Howard, S. A., Mahon, A. R., Parsons, H. L., Sumner, T., Collins, J. L., Scarsbrook, G. A., Sussman, R. S. and Whitehead, A. J., J. Phys. D 28 12791283 (1995).Google Scholar
5. Yokota., Y., Kawarda, H. and Hiraki, A., Japn. J. Appl. Phys. 29 L2232–L2235 (1990).Google Scholar
6. Khasawinah, S., Popovici, G., Farmer, J., Sung, T., Prelas, M. A., Chamberlain, J. and White, H., J. Mater. Res. 10 2523 (1995).Google Scholar
7. Vance, E. R., J. Phys. C. 4 257 (1971).Google Scholar
8. Gorelik, V. S., Gordeev, V. I., Nikolaenko, V. A. and Faizullov, T. F., Soy. Phys. 11 2831 (1990).Google Scholar
9. Han, S., Prussin, S. G., Ager, J. W., Pan, L. S., Kania, D. R., Lane, S. M. and Wagner, R. S. Nuc. Instr and Meth. B80-81 14461450 (1993).Google Scholar
10. Khasawinah, S., Sung, T., Spitsyn, B., Miller, W. H., Popovici, G., Prelas, M. A., Charlson, E. J., Charlson, E. M., Meese, J. and Stacy, T., Electrochemical Society Proc., Vol 93–17, pp 10321035 (1993).Google Scholar
11. Klein, C. A., Harnett, T. M., and Robimson, C. J., SPIE 1534 117 (1991).Google Scholar
12. Morelli, D. T., Perry, T. A. and Farmer, J. W., Phys. Rev. B 47 131139 (1993).Google Scholar
13. Bopart, H., Straaten, J. V., Silvera, I. F., Phys. Rev. B 32 1423 (1985).Google Scholar
14. Khasawinah, S., Popovici, G. and Prelas, M. A., unpublished dataGoogle Scholar
15. Khasawinah, S., Popovici, G. and Prelas, M. A., Electrical Characterization of Neutron Irradiated Diamond Films, in preparationGoogle Scholar