Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T10:36:15.737Z Has data issue: false hasContentIssue false

Radius of Gyration Scaling in the Semidilute Regime

Published online by Cambridge University Press:  22 February 2011

J.G. Barker
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD 20899
A.M. Mayes
Affiliation:
Massachusetts Institute of Tech., Dept. of Materials Science and Eng., Cambridge, MA 02139
R.M. Briber
Affiliation:
University of Maryland, Dept. of Materials and Nuclear Eng., College Park, MD 20742
W.J. Orts
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD 20899
Get access

Abstract

Small-angle neutron scattering is used to investigate swelling effects of polystyrene in carbon tetrachloride and cis-decalin in the semidilute regime. The observed scaling exponent m where Rg2 ~ ф-m was m=0.15±0.01 both in carbon tetrachloride and in cis-decalin at T=180 C, which is much weaker than the theoretical prediction m=0.25. A review of the literature has found the scaling exponent to vary from 0.1 to 0.25. Possible causes for this variation in the observed scaling exponent are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 de Gennes, P.G., Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, NY, 1979), p. 82.Google Scholar
2 Flory, P.J., J. Chem. Phys. 17, 303 (1949).Google Scholar
3 Edwards, S.F., Proc. Phys. Soc. 85, 613 (1965).Google Scholar
4 LeGuillou, J.C. and Zinn-Justin, , Phys. Rev. Lett. 39, 35 (1977).Google Scholar
5 Akcasu, A.Z., Summerfield, G.C., Han, C.C., Kim, C.Y., and Yu, H., J. Polym. Sci. 18, 863 (1980).Google Scholar
6 Benoit, H. and Benmouna, M., Macromolecules 17, 535 (1984).Google Scholar
7 Debye, P., Appl. Phys. 15, 338 (1944).Google Scholar
8 McIntyre, D., Mazur, J. and Wims, A.M., J. Chem. Phys. 49, 2887 (1968).Google Scholar
9 Mori, K., Tanaka, H., Hasegawa, H., and Hashimoto, T., Polymer 30, 1389 (1989).Google Scholar
10 Identification of materials used in this paper does not imply recommendation by the National Institute of Standards and Technology nor does it imply that these materials are necessarily the best available for the purpose.Google Scholar
11 Barker, J.G. and Pedersen, J.S., J. Appl. Cryst. (1994).Google Scholar
12 Barton, A.F.M., CRC Handbook of Polymer-Liquid Interaction Parameters and Solubility Parameters, (CRC Press, 1990), p. 306.Google Scholar
13 de la Cruz, M. Olvera, J. Chem. Phys. 90, 1995 (1989).Google Scholar
14 Londono, , Narten, , Wignall, , Honnell, , Hsieh, , Johnson, and Bates, , Macromolecules 27, 2864 (1994).Google Scholar
15 Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P., Numerical Recipes in Fortran 2nd Ed. (Cambridge University Press, 1992), p. 684.Google Scholar
16 Fetters, L.J., Lohse, D.J., Richter, D., Witten, T.A., and Zirkel, A., Macromolecules 27, 4639 (1994).Google Scholar
17 Daoud, M., Cotton, J.P., Farnoux, B., Jannink, B., Benoit, H., Duplessix, R., Picot, C. and deGennes, P.G., Macromolecules 8, 804 (1975).Google Scholar
18 Hayashi, H., Hamada, F. and Nakajima, A., Makromol. Chem. 178, 827 (1977).Google Scholar
19 King, J.S., Boyer, W., Wignall, G.D. and Ullman, R., Macromolecules 18, 709 (1985).Google Scholar
20 Mayes, A.M., Barker, J.G. and Russell, T.P., J. Chem. Phys. (1994).Google Scholar
21 Leibler, L., Macromolecules 13, 1602 (1980).Google Scholar
22 Berry, G.C., J. Chem. Phys., 44, 4550 (1960).Google Scholar
23 Appelt, B. and Meyerhoff, G., Macromolecules 13, 657 (1980).Google Scholar
24 Allen, G., Gee, G. and Nicholson, J.P., Polymer 1, 56 (1960).Google Scholar