Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T09:46:37.775Z Has data issue: false hasContentIssue false

Radiative Recombination Processes in Boron Modulation-Doped SiGe Quantum Wells

Published online by Cambridge University Press:  26 February 2011

I. A. Buyanova
Affiliation:
On leave from the Institute of Semiconductor Physics, Ukrainian Academy of Sciences, Kiev, Ukraine
W. M. Chen
Affiliation:
Department of Physics and Measurement Technology, Linkbping University, S-581 83 Linköping, Sweden
A. Henry
Affiliation:
Department of Physics and Measurement Technology, Linkbping University, S-581 83 Linköping, Sweden
W. X. Ni
Affiliation:
Department of Physics and Measurement Technology, Linkbping University, S-581 83 Linköping, Sweden
G. V. Hansson
Affiliation:
Department of Physics and Measurement Technology, Linkbping University, S-581 83 Linköping, Sweden
B. Monemar
Affiliation:
Department of Physics and Measurement Technology, Linkbping University, S-581 83 Linköping, Sweden
Get access

Abstract

The radiative recombination processes of the two-dimensional hole gas formed in SiGe quantum wells (QWs) due to modulation doping are studied in details by photoluminescence (PL) spectroscopy. Boron-modulation-doped Si/Sil−xGex/Si heterostructures grown by molecular beam epitaxy (MBE) are studied. It is shown that charge transfer of holes from the doped Si layers causes the filling of the SiGe QWs leading to an appearance of a broad asymmetric PL band with a characteristic sharp high energy cut-off and enhanced recombination near the Fermi edge. A reduction of this PL enhancement is observed with an increase of measuring temperature. The PL bandwidth and the high energy cut-off are found to vary with either the doping level or the spatial separation between the delta-doped layers and the QWs. This PL band is argued to arise from the recombination of the holes in the QWs and electrons confined near the QWs as a result of the band bending induced by the delta-doping. The shape of the PL band with enhanced intensity near the Fermi edge are discussed in terms of the phase space filling and many-body effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Park, J. S., Karunasiri, R. P. G., Mii, Y. J., and Wang, K. L., Appl. Phys. Lett. 58, 1083 (1991).Google Scholar
2. Fromherz, F., Koppensteiner, E., Helm, M., Bauer, G., Nutzel, J. F., and Abstreiter, G., Phys. Rev. B 50, 15073 (1994).Google Scholar
3. Gossmann, H. J., and Unterwald, F. C., Phys. Rev. B47, 12618 (1993).Google Scholar
4. Radamson, H. H., Sardela, M. R., Nur, O., Willander, M., Sernelius, B. E., Ni, W. X., and Hansson, G. V., Appl. Phys. Lett. 64, 1842 (1994).Google Scholar
5. Cams, T. K., Zheng, X., Wang, K. L., Wu, S. L., and Wang, S. J., Journal of Vacuum Science and Technology B 12, 1203 (1994).Google Scholar
6. Loo, R., Vescan, L., Hartmann, A., Apetz, R., Zastrow, U., Schäpers, T., Leuther, A., Dieker, C., and Lüth, H., Phys. Rev. B50, 18113 (1994).Google Scholar
7. Skolnick, M. S., Rorison, J. M., Nash, K. J., Mowbray, D. J., Tapster, P. R., Bass, S. J., and Pitt, A. D., Phys. Rev. Lett. 58, 2130 (1987).Google Scholar
8. Chen, Y. F., Lin, L. Y., Shen, J. L., and Liu, D. W., Phys. Rev. B46, 12433 (1992).Google Scholar
9. Zhang, Y.-H., Jiang, D.-S., and Ploog, K., Appl. Phys. Lett. 60, 2264 (1992).Google Scholar
10. Chen, W., Fritze, M., Nurmikko, A., Colvard, C., Ackley, D. and Lee, H., Phys. Rev. Lett. 64, 2434 (1990).Google Scholar
11. Zhao, Q. X., Holtz, P. O., Monemar, B., Sörman, E., Chen, W.M., Hallin, C., Sundaram, M., Merz, J. L., and Gossard, A. C., Phys. Rev. B43, 7354 (1991).Google Scholar
12. Skolnick, M. S., Whittaker, D. W., Simmonds, P. E., Fisher, T. A., Saker, M. K., Rorison, J. M., Smith, R. S., Kirby, P. B., and White, C. R. H., Phys. Rev. B43, 7354 (1991).Google Scholar
13. Lenchyshyn, L.C., Thewalt, M.L.W., Sturm, J.C., Schwartz, P.V., Prinz, E.J., Rowell, N.L., Noël, J.-P. and Houghton, D.C., Appl. Phys. Lett. 60, 3174 (1992).Google Scholar
14. Arbet-Engels, V., Wang, K.L., Karunasiri, R. P. G., and Park, J. S., Appl. Phys. Lett. 59, 2248 (1991).Google Scholar
15. Hawrylak, P., Phys. Rev. B44, 3821 (1991); P. Hawrylak, Phys. Rev. B44, 6262 (1991).Google Scholar
16. Mahan, G. D., Phys. Rev. 153, 882 (1967).Google Scholar
17. Schmitt-Rink, S., Ell, C. and Haug, H., Phys. Rev. B33, 1183 (1986).Google Scholar
18. Chun, S. K., Pan, D. S., and Wang, K. L., Phys. Rev. B47, 15638 (1993).Google Scholar
19. Corbin, E., Wong, K.B. and Jaros, M., Phys. Rev. B50, 2339 (1994).Google Scholar