Published online by Cambridge University Press: 15 February 2011
Hydrogen doping of optical fibers has been examined as an approach to increase the radiation hardness of optical fibers for high dosage (107 rad) space applications. A systematic study has been performed on 4 types of optical fibers designed to operate at 1.31 and 1.55 μm and doped with up to 8200 ppm H2. For low dosages, the most significant reductions m radiation-induced losses were obtained with low H2 concentrations (<10 ppm). Spectral loss measurements for hydrogen-doped fibers containing GeO2 show a radiation-induced loss peak at 1.45 μm and a broad absorption band around 0.6–0.8 μm. These bands are not observed in the pure silica-core fibers.
Fibers were fabricated to permanently trap 2.7 ppm H2 and the radiation-induced losses in these fibers are 35 to 85% that of the untreated fibers. Experimental data are used to delineate the γ-T-α operating limits which define the maximum gamma radiation (γ) dosages at different temperatures (T) while still meeting a requirement of α<150 dB/km. Among the four fiber types, hydrogen-doped silicacore fibers show the widest operating range and smallest radiation-induced loss for space applications. However, hydrogen-doped fibers with moderately high GeO2-doped core offer the best tradeoff between the bending and radiation-induced losses.