Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-04T03:27:09.842Z Has data issue: false hasContentIssue false

Radiation Induced Structural Changes in Normal Spinels

Published online by Cambridge University Press:  01 February 2011

David Simeone
Affiliation:
[email protected], CEA, Materiaux Fonctionnels pour l Energie, Equipe Mixte CEA-CNRS-ECP, DEN/DMN/SRMA/LA2M, CEN Saclay, Gif sur yvette, 91191, France
Gianguido Baldinozzi
Affiliation:
[email protected], CNRS, Materiaux Fonctionnels pour l'Energie, CNRS-CEA-ECP, Laboratoire SPMS, Ecole Centrale de Paris, Chatenay Malabry, 92292, France
Dominique Gosset
Affiliation:
[email protected], CEA, Materiaux Fonctionnels pour l'Energie, CEA-CNRS-ECP, DEN/DMN/SRMA/LA2M, CEN Saclay, Gif sur yvette, 91191, France
Leo Mazerolles
Affiliation:
[email protected], CNRS, Institut des Sciences Chimiques Seine Amont, Thiais, 92000, France
Lionel Thome
Affiliation:
[email protected], CNRS, CSNSM Orsay, Université Paris XI, Orsay, 91400, France
Get access

Abstract

Ion irradiation induced phase transformations in three normal spinel compounds MgAl2O4, MgCr2O4 and ZnAl2O4 have been investigated by X-ray diffraction, Raman spectroscopy and Transmission Electron Microscopy. This work presents a unified framework to describe the radiation effects in normal spinels. Irradiation modifies the atomic and mesoscopic structures of theses spinels in different ways. At the atomic scale, it produces the inversion of the cations in the spinel structure which can always be described within its usual Fd-3m space group. At the mesoscopic scale, it produces microdomains, responsible for the important changes in the X-ray diffraction patterns.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sickafus, K.E, Minervi, L.. Grimes, R., Valdez, J., Ishimaru, M., Li, F., McClellan, K., Hartmann, T., Science, Vol. 289, 748 (2000).Google Scholar
2. Martin, G., Bellon, P., Sol. State. Phys., 53–54, 1 (1997).Google Scholar
3. Bellon, P., Martin, G., Phys. Rev. B 39–4, 2403 (1989).Google Scholar
4. Simeone, D., Baldinozzi, G., Gosset, D., LeCaër, S., Mazerolles, L., Phys. Rev. B 70, 134116 (2004).Google Scholar
5. Chartier, A., Meis, C., Crocombette, J.P., Weber, W., Corrales, L., Phys. Rev. Lett. 94, 25505 (2005).Google Scholar
6. Clinart, F., Hurley, G., Hobbs, L., J. of Nucl. Mat. 108/109, 655 (1982).Google Scholar
7. Sickafus, K., Larson, A., Yu, N., Nastasi, M., Hollenberg, G., Garner, F., Bradt, R., J. Nucl. Mat. 219, 128 (1995).Google Scholar
8. Wang, L., Gong, W., Wang, S., Ewing, R., J. Am. Ceram. Soc. 82–12, 3321 (1999).Google Scholar
9. Simeone, D., Dodane, C., Gosset, D., Daniel, P., Beauvy, M., J. Nucl. Mat. 300, 151 (2000).Google Scholar
10. Devanathan, R., Sickafus, K., Yu, N., Nastasi, M., Phil. Mag. Lett. 72–3, 155 (1995).Google Scholar
11. Ishimaru, M., Afanasev-Charkin, I., Sickafus, K., Appl. Phys. Lett. 76–18, 2556 (2000).Google Scholar
12. Baldinozzi, G., Simeone, D., Gosset, D., Dollé, M., Thomé, L., Mazerolles, L., Nucl. Inst. and Method. B. 250, 119 (2005).Google Scholar
13. Gosset, D., Simeone, D., Dutheil, M., Bouffard, S., Beauvy, M., J. Europ. Ceram. Soc. 25, 2677 (2005).Google Scholar