Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-02T22:10:54.520Z Has data issue: false hasContentIssue false

Quaternary Alloys InxAlyGa1−x-yAs Grown on GaAs with A Compositionally-Step-Graded Buffer

Published online by Cambridge University Press:  25 February 2011

C. Fan
Affiliation:
University of California, San Diego, La Jolla, CA 92093-0407
D. W. Shih
Affiliation:
University of California, San Diego, La Jolla, CA 92093-0407
M. W. Hansen
Affiliation:
University of California, San Diego, La Jolla, CA 92093-0407
J. Chen
Affiliation:
University of California, San Diego, La Jolla, CA 92093-0407
P. Z. Lee
Affiliation:
University of California, San Diego, La Jolla, CA 92093-0407
S. C. Esener
Affiliation:
University of California, San Diego, La Jolla, CA 92093-0407
Get access

Abstract

Fundamental bandgaps and Schottky barrier heights of strain-relaxed quaternary InxAlyGa1−x-yAs alloys with 0 < x < 0.35 and 0 < y < 0.30 were studied. The alloys were grown on GaAs substrates by molecular beam epitaxy. The lattice mismatch (up to 2.5%) and mismatch strain were accommodated by a compositionally-step-graded buffer. A residual compressive strain of less than 0.5% was determined by x-ray diffraction. Measured Schottky barrier heights v.s. bandgap deviate from the values predicted by the “commonanion” rule. This behavior is attributed to the compositional inhomogeneities and chemical reactivity of the air-exposed InAlGaAs surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kasukawa, A., Bhat, R., Zah, C. E., Koza, M. A., and Lee, T. P., Appl. Phys. Lett. 59, 2486 (1991).Google Scholar
2 Wang, C. A., Walpole, J. N., Missaggia, L. J., Donnelly, J. P., and Choi, H. K., Appl. Phys. Lett. 58, 2208 (1991).Google Scholar
3. Vlcek, J. C. and Fonstad, C. G., Electronics Letters, 27, 1213 (1991).Google Scholar
4. Sugiyama, Y., Inata, T., Fujii, T., Nakata, Y., Muto, S., and Hiyamizu, S., Jap. J. Appl. Phys. 25, L648 (1986).Google Scholar
5. Hickmott, T. W., Solomon, P. M., Fischer, R., and , Morkow, J. Appl. Phys. 57, 2844 (1985).Google Scholar
6. Wood, T. H., Chang, T. Y., Pastalan, J. Z., Burrus, C. A., and et al. Electronics Letters, 27, 257 (1991).Google Scholar
7. Casey, H. C. Jr, and Panish, M. B., J. Appl. Phys. 40, 4910 (1969).Google Scholar
8. Olego, D., Chang, T. Y., Silberg, E., Caridi, E. A., and Pinczuk, A., Appl. Phys. Lett. 41, 476 (1982).Google Scholar
9. McCaldin, J. O., McGill, T. C., and Mead, C. A., J. Vac. Sci. Technol. 13, 802 (1976).Google Scholar
10. Best, J. S., Appl. Phys. Lett. 34, 522 (1979).Google Scholar
11. Chu, P., Lin, C. L., and Wieder, H. H., Appl. Phys. Lett. 53, 2423 (1988).Google Scholar
12. Okamoto, K., Wood, C. E. C., and Eastman, L. F., Appl. Phys. Lett. 38, 638 (1981).Google Scholar