Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T08:09:04.494Z Has data issue: false hasContentIssue false

Quantum Confinement Effects in Calcium Sulfide: The Role of Indirect Transitions in the Red Shift of the Band Edge in Semiconductor Nanoparticles

Published online by Cambridge University Press:  23 September 2014

Daniel Rivera-Vázquez
Affiliation:
Chemical Imaging Center, Department of Chemistry, The University of Puerto Rico at Mayaguez, Mayaguez, Puerto Rico 00680
Yohaselly Santiago-Rodríguez
Affiliation:
Department of Chemical Engineering, The University of Puerto Rico at Mayaguez, Mayaguez, Puerto Rico, 00680
Miguel A. González
Affiliation:
Chemical Imaging Center, Department of Chemistry, The University of Puerto Rico at Mayaguez, Mayaguez, Puerto Rico 00680
Miguel E. Castro-Rosario*
Affiliation:
Chemical Imaging Center, Department of Chemistry, The University of Puerto Rico at Mayaguez, Mayaguez, Puerto Rico 00680
*
*Corresponding author: [email protected]
Get access

Abstract

Calcium sulfide (CaS) nanoparticles are cadmium free fluorescent nanostructures with potential applications in nanomedicine and photovoltaic cells. We report on the synthesis and optical properties of CaS nanoparticles prepared by the reaction of Ca(CH3CO2)2 and DMSO in a microwave. The absorption spectra of CaS prepared from this method consists of a well-defined peak in the UV and a long wavelength tail that extends above 700 nm. Emission bands centered at around 500 nm with a long wavelength tail that extends above 600 nm are observed upon excitation at 405 nm. STM measurements reveal the formation of CaS nanoparticles with an average diameter of (3.2 ± 0.7) nm. The direct and indirect band gaps are estimated to be (0.403 ± 0.003) eV and (4.135 ± 0.006) eV, respectively. Theoretical calculations on small CaS clusters are used to establish the physical properties of calcium sulfide nanoclusters, including the optical absorption spectra. Unique to CaS nanostructures is the absorption of light at wavelengths longer that in the bulk material instead of the blue shift associated with quantum confinement effects in semiconductors. Indeed, the strong absorption bands in the visible region of the spectra of the CaS nanostructures do not have a counterpart in the gas or solid phases. The optical absorption spectra are proposed to have a significant contribution from indirect transitions which are discussed in terms of the dispersion of the phonon frequency.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Caliendo, G., Cirino, G., Santagada, V., and Wallace, J.L., J. Med. Chem. 53, 6275 (2010).10.1021/jm901638jCrossRefGoogle Scholar
Li, Y.-F., Xiao, C.-S., and Hui, R.-T., Medical Hypotheses 73, 445 (2009).10.1016/j.mehy.2009.03.030CrossRefGoogle Scholar
Hutter, E. and Maysinger, D., Microsc. Res. Tech. 74, 592 (2011).10.1002/jemt.20928CrossRefGoogle Scholar
Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R., and Nann, T., Nat. Methods 5, 763 (2008).10.1038/nmeth.1248CrossRefGoogle Scholar
Freeman, R. and Willner, I., Chem. Soc. Rev. 41, 4067 (2012).10.1039/c2cs15357bCrossRefGoogle Scholar
Kamat, P.V., J. Phys. Chem. C 112, 18737 (2008)10.1021/jp806791sCrossRefGoogle Scholar
De Angelis, R., Casalboni, M., Hatami, F., Ugur, A., Masselink, W.T., and Prosposito, P., Sensors and Actuators B: Chemical 162, 149 (2012).10.1016/j.snb.2011.12.052CrossRefGoogle Scholar
Smet, P.F., Moreels, I., Hens, Z., and Poelman, D., Materials 3, 2834 (2010).10.3390/ma3042834CrossRefGoogle Scholar
Yen, W. M. and Weber, M. J., Inorganic Phosphors (2004).10.1201/9780203506325CrossRefGoogle Scholar
Ferrer, E., et al. . Materials Research Bulletin 47, 3835 (2012).10.1016/j.materresbull.2011.02.019CrossRefGoogle Scholar
Frisch, M. J., et al. . Gaussian 03 (Gaussian, Inc., Wallingford, CT, 2003)., Gaussian 03, Revision B.03, (n.d.).Google Scholar
Wang, C., Tang, K., Yang, Q., An, C., Hai, B., Shen, G., and Qian, Y., Chemical Physics Letters 351, 385 (2002).10.1016/S0009-2614(01)01413-0CrossRefGoogle Scholar
Rivera-Vazquez, D., Carrasco, N., Maldonado, L., Suarez, E., Poventud, C., Marrero, C. and Castro, M.. The FASEB Journal 28 (1) 780.9 (2014).Google Scholar
Murphy, C.J. and Coffer, J.L., Applied Spectroscopy 56, 16 (2002).10.1366/0003702021954214CrossRefGoogle Scholar
Brus, L.E., The Journal of Chemical Physics 80, 4403 (1984).10.1063/1.447218CrossRefGoogle Scholar
Reithmaier, J.P., Semicond. Sci. Technol. 23, 123001 (2008).10.1088/0268-1242/23/12/123001CrossRefGoogle Scholar
Luo, J.-W., Franceschetti, A., and Zunger, A., Phys. Rev. B 78, 035306 (2008).10.1103/PhysRevB.78.035306CrossRefGoogle Scholar
Grujić-Brojčin, M., et al. . Acta Physica Polonica A 116, 51 (2009).10.12693/APhysPolA.116.51CrossRefGoogle Scholar