Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T20:53:10.984Z Has data issue: false hasContentIssue false

The Quantitative Study of Trapped Charges in Nano-Scale Ge Islands probed by EFM Measurement

Published online by Cambridge University Press:  01 February 2011

Zhen Lin
Affiliation:
[email protected], Institut National des Sciences Appliquées, Institut des Nanotechnologies de Lyon, Villeurbanne, France
Pavel Brunkov
Affiliation:
[email protected], Technical Institute of the Russian Academy of Sciences, Saint-Pétersbourg, Russian Federation
Franck Bassani
Affiliation:
[email protected], Institut Matériaux Microélectronique Nanosciences de Provence, Marseille, France
Georges Bremond
Affiliation:
[email protected], Institut National des Sciences Appliquées, Institut des Nanotechnologies de Lyon, Villeurbanne, France
Get access

Abstract

In this work, an individual Ge island on top of silicon dioxide layer has been charged by a conductive EFM tip and quantitatively characterized at room temperature. Electrons or holes were successfully injected and were trapped homogenously in the isolated nano-scale Ge island. In order to quantitatively study these trapped charges, a truncated capacitor model was used to approximate the real capacitance between the tip and island surface. The analytical expression of the quantity of trapped charges in isolated Ge island as a function of the EFM phase signal was deduced. Applying a tip bias for -7V during 30 seconds leads to an injection about 800 electrons inside an individual Ge island.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Binning, G., Gerber, C. and Quate, C. F., Phys. Rev. Lett. 56, 930 (1989)10.1103/PhysRevLett.56.930Google Scholar
2 Dimension V Scanning Probe Microscope Manual from Vecco Company, 279 (2007)Google Scholar
3 Nyffenegger, R.M. and Penner, R.M. Chem. Rev. 97, 1195 (1997)10.1021/cr960069iGoogle Scholar
4 Kolb, D.M., Ullmann, R. and Will, T. Science 275, 1097 (1997)10.1126/science.275.5303.1097Google Scholar
5 Schultze, J.W. and Lohrengel, M.M. Electrochim. Acta 45, 2499 (2000)Google Scholar
6 Berndt, R., Gaisch, R., Gimzewski, J. K., Reihl, B., Schlittler, R. R., Schneider, W. D., Tschudy, M., Science 262, 1425 (1993).10.1126/science.262.5138.1425Google Scholar
7 Girard, P. , Cadet, Ph., Ramonda, M., Shmidt, N., Usikov, A. N., Lundin, W. V., Dunaevskii, M. S., Titkov, A. N., Phys. Stat. Sol. (a), 195, No.3, 508 (2003)10.1002/pssa.200306144Google Scholar
8 Bischoff, M. M. J., Wielen, M. C. M. M. van der, Kempen, H. van, Surf. Sci. 400, 127 (1998).10.1016/S0039-6028(97)00855-8Google Scholar
9 Ito, K. Ohyama, S., Uehara, Y., Ushioda, S., Surf. Sci. 324, 282 (1995).10.1016/0039-6028(94)00674-1Google Scholar
10 Dianoux, R., Martins, F., Marchi, F., Alandi, C., Comin, F., and Chevrier, J., Phys. Rev. B 68, 045403 (2003)Google Scholar
11 Oliver, Rachel A, Rep. Prog. Phys. 71, 076501 (2008)10.1088/0034-4885/71/7/076501Google Scholar
12 Sarid, S., Scanning Force Microscopy, Oxford University Press, New York, 1994.Google Scholar
13 Hudlet, S., Jean, M. Saint, Guthmann, C., Berger, J., Eur. Phys. J.B 2, 5 (1998)10.1007/s100510050219Google Scholar
14 Marchi, F., Dianoux, R., Smilde, H.J.H., Murd, P., Comin, F., Chevrier, J., J.Electrostatics 66, 538 (2008).Google Scholar
15 Schaadt, D., Yu, E.T., Sanar, S., Berkowitz, A.E., Appl.Phys.Lett. 74, 472 (1999)10.1063/1.123039Google Scholar
16 Ng, C.Y., Chen, T.P., Lau, H.W., Liu, Y., Tse, M.S., Tan, O.K., Lim, V.S.W., Appl. Phys. Lett. 85, 2941 (2004).10.1063/1.1801675Google Scholar