Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T18:21:52.909Z Has data issue: false hasContentIssue false

Quantitative Model for Clusters of String-like Cooperative Motion in a Coarse-Grained Glass-Forming Polymer Melt

Published online by Cambridge University Press:  30 January 2014

Beatriz A Pazmiño Betancourt
Affiliation:
Department of Physics, Wesleyan University, Middletown, Connecticut 06459, USA
Jack F. Douglas
Affiliation:
Materials Science and Engineering, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899.
Francis W. Starr
Affiliation:
Department of Physics, Wesleyan University, Middletown, Connecticut 06459, USA
Get access

Abstract

We apply a living polymerization theory to describe cooperative string-like particle rearrangement clusters observed in simulations of a coarse-grained polymer melt. The theory quantitatively describes the interrelation between the average string length L, configurational entropy Sconf, and the order parameter for string assembly Φ without free parameters. Combining this theory with the Adam-Gibbs (AG) model allows us to predict the relaxation time τ in a lower temperature T range than accessible by current simulations. In particular, the combined theories suggest a return to Arrhenius behavior near Tg and a low T residual entropy, thus avoiding a Kauzmann ‘entropy crisis’.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Debenedetti, P. G., Metastable Liquids (Princeton Univ. Press, Princeton, 1996).Google Scholar
Ediger, M. D., Ann. Rev. Phys. Chem. 51, 99 (2000).CrossRefGoogle Scholar
Richert, R., J. Phys.-Cond. Matt. 14, R703 (2002).CrossRefGoogle Scholar
Kob, W., Donati, C., Plimpton, S. J., Poole, P. H., and Glotzer, S. C., Phys. Rev. Lett. 79, 2827 (1997).CrossRefGoogle Scholar
Kawasaki, T. and Tanaka, H., J. Phys.: Cond. Matt. 22, 232102 (2010).Google Scholar
Adam, G. and Gibbs, J. H., J. Chem. Phys. 43, 139 (1965).CrossRefGoogle Scholar
Richert, R. and Angell, C. A., J. Chem.l Phys. 108, 9016 (1998).CrossRefGoogle Scholar
Roland, C. M., Capaccioli, S., Lucchesi, M., and Casalini, R., J. Chem. Phys. 120, 10640 (2004).CrossRefGoogle Scholar
Sciortino, F., Kob, W., and Tartaglia, P., Phys. Rev. Lett. 83, 3214 (1999).CrossRefGoogle Scholar
Sastry, S., Nature 409, 164 (2001).CrossRefGoogle Scholar
Speedy, R. J., J. Chem. Phys. 110, 4559 (1999).CrossRefGoogle Scholar
Speedy, R. J., J. Chem.Phys. 114, 9069 (2001).CrossRefGoogle Scholar
Angelani, L. and Foffi, G., J. Phys.: Cond. Matt. 19, 256207 (2007).Google Scholar
Starr, F. W., Sastry, S., Nave, E. La, Scala, A., Stanley, H. E., and Sciortino, F., Phys Rev E 63, 041201 (2001).CrossRefGoogle Scholar
Saika-Voivod, I., Sciortino, F., and Poole, P.H., Phys. Rev. E 69, 41503(2004)CrossRefGoogle Scholar
Mossa, S., Nave, E. La, Stanley, H. E., Donati, C., Sciortino, F., and Tartaglia, P., Phys. Rev. E 65, 041205 (2002).CrossRefGoogle Scholar
Kirkpatrick, T. R., Thirumalai, D., and Wolynes, P. G., Phys. Rev. A 40, 1045 (1989).CrossRefGoogle Scholar
Starr, F. W. and Douglas, J. F., Phys. Rev. Lett. 106, 115702 (2011).CrossRefGoogle Scholar
Pazmino Betancourt, B. A., Douglas, J. F., and Starr, F. W., Soft Matter 9, 241 (2013).CrossRefGoogle Scholar
Starr, F. W., Douglas, J. F., and Sastry, S., J. Chem. Phys. 138, 12A541 (2013).CrossRefGoogle Scholar
Hanakata, P. Z., Douglas, J. F., and Starr, F. W., J. Chem. Phys. 137, 244901 (2012).CrossRefGoogle Scholar
Dudowicz, J., Freed, K. F., and Douglas, J. F., J. Chem. Phys. 111, 7116 (1999).CrossRefGoogle Scholar
Douglas, J. F., Dudowicz, J., and Freed, K. F., J. Chem. Phys. 125, 144907 (2006).CrossRefGoogle Scholar
Donati, C., Douglas, J. F., Kob, W., Plimpton, S. J., Poole, P. H., and Glotzer, S. C., Phys. Rev. Lett. 80, 2338 (1998a).CrossRefGoogle Scholar
Riggleman, R. A., Yoshimoto, K., Douglas, J. F., and de Pablo, J. J., Phys. Rev. Lett. 97, 045502 (2006).CrossRefGoogle Scholar
Grest, G. S. and Kremer, K., Phys. Rev. A 33, 3628 (1986).CrossRefGoogle Scholar
Aichele, M., Gebremichael, Y., Starr, F. W., Baschnagel, J., and Glotzer, S. C., J. Chem. Phys. 119, 5290 (2003).CrossRefGoogle Scholar
Sciortino, F., Geiger, A., and Stanley, H. E., Nature 354, 218 (1991).CrossRefGoogle Scholar
Sastry, S., Debenedetti, P. G., and Stillinger, F. H., Nature 393, 554 (1998).CrossRefGoogle Scholar
Rahedi, J., Douglas, J. F., and Starr, F. W., J. Chem. Phys. 128, 024902 (2008).CrossRefGoogle Scholar
Mauro, J. C., Yue, Y., Ellison, A. J., Gupta, P. K., and Allan, D. C., Proc. Natl. Acad. Sci. (USA) 106, 19780 (2009).CrossRefGoogle Scholar
Gebremichael, Y., Schrøder, T. B., Starr, F. W., and Glotzer, S. C., Phys. Rev. E 64, 051503 (2001).CrossRefGoogle Scholar
Götze, W., Liquids, Freezing and the Glass Transition (North-Holland Amsterdam, 1991), pp. 287503.Google Scholar
Tracht, U., Wilhelm, M., Heuer, A., Feng, H., Schmidt-Rohr, K., and Spiess, H. W., Phys. Rev. Lett. 81, 2727 (1998).CrossRefGoogle Scholar
Macedo, P. B. and Napolitano, A., J. Chem. Phys. 49, 1887 (1968).CrossRefGoogle Scholar
Yamamuro, O., Tsukushi, I., Lindqvist, A., Takahara, S., Ishikawa, M., and Matsuo, T., J. Phys. Chem. B 102, 1605 (1998).CrossRefGoogle Scholar
Hong, L., Gujrati, P. D., Novikov, V. N., and Sokolov, a. P., J. Chem. Phys. 131, 194511 (2009).CrossRefGoogle Scholar
Zhao, J., Simon, S. L., and McKenna, G. B., Nature Comm. 4, 1783 (2013).CrossRefGoogle Scholar
Dudowicz, J., Freed, K.F., and D. J.F., Adv. Chem. Phys. 137, 125 (2008).Google Scholar
Dudowicz, J., Freed, K. F., and Douglas, J. F., J. Chem. Phys. 113, 434 (2000).CrossRefGoogle Scholar
Donati, C., Douglas, J. F., Kob, W., Plimpton, S. J., Poole, P. H., and Glotzer, S. C., Phys. Rev. Lett. 80, 2338 (1998b).CrossRefGoogle Scholar
Zhang, H., Kalvapalle, P., and Douglas, J. F., J. Phys. Chem. B 115, 14068 (2011).CrossRefGoogle Scholar
Zhang, H., Khalkhali, M., Liu, Q., and Douglas, J. F., J. Chem. Phys. 138, 12A538 (2013).CrossRefGoogle Scholar
Zhang, H., Srolovitz, D. J., Douglas, J. F., and Warren, J. A., Proc. Nat. Acad. Sci. (USA) 106, 7735 (2009).CrossRefGoogle Scholar
Nagamanasa, K. H., Gokhale, S., Ganapathy, R., and Sood, A. K., Proc. Nat. Acad. Sci. (USA) 108, 11323 (2011).CrossRefGoogle Scholar
Shavit, A., Douglas, J. F., and Riggleman, R. A., J. Chem. Phys. 138, 12 (2013).CrossRefGoogle Scholar
Gai, Z., Yu, H., and Yang, W., Phys. Rev. B 53, 13547 (1996).CrossRefGoogle Scholar
Weeks, E. R., Crocker, J. C., Levitt, A. C., Schofield, A., and Weitz, D. A., Science 287, 627 (2000).CrossRefGoogle Scholar
Feymann, R., Progress in Low temperature Physics, vol. I (Elsevier, 1955).Google Scholar
Nguyen, K. and Sudbø, A., Phys. Rev. B 60, 15307 (1999).CrossRefGoogle Scholar
Dasgupta, and Halperin, B. I., Phys. Rev. Lett. 47, 1556 (1981).CrossRefGoogle Scholar
Chorin, J., Phys. Rev. Lett. 60, 1947 (1988).CrossRefGoogle Scholar
Douglas, J. F. and Hubbard, J. B., Macromolecules 24, 3163 (1991).CrossRefGoogle Scholar
Dudowicz, J., Douglas, J. F., and Freed, K. F., J. Chem. Phys. 130, 164905 (2009).CrossRefGoogle Scholar