Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T05:28:28.175Z Has data issue: false hasContentIssue false

Quantitative Laser-Induced Fluorescence Measurements of Reactive Species: Spectroscopy and Collision Dynamics of SiCl

Published online by Cambridge University Press:  22 February 2011

Jay B. Jeffries*
Affiliation:
Chemical Physics Laboratory, SRI International, Menlo Park, CA 94025
Get access

Abstract

Laser-induced fluorescence (LIF) is an ideal technique to determine the gas phase concentration of the chemically reactive radical species in processing plasmas. Quantitative species concentration measurements require spectroscopic and collision dynamics data. Experiments to obtain such data for the B2 and Σ+ B′2 Δ states of SiCl are described. Using LIF, the transition strengths, radiative lifetimes, and collisional removal rates are determined. Collisional transfer between the two excited electronic states, B′→B, shows a very unusual quantum state specificity for the final vibrational levels which is quite different for each of the rare gas collision partners (He, Ne, Ar). Such energy transfer makes the B′2 Δ state unsuitable for quantitative LIF diagnostics; however, the B2Σ+ state appears to be an ideal excited state for LIF diagnostic measurements in silicon etching plasmas.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Crosley, D. R., Paper C3.2, Process Diagnostics Symposium, Materials Research Society, 1988.Google Scholar
[2] Karlicek, R. F., Donnelly, V. M., and Johnston, W. D. Jr., Laser Diagnostics and Photochemical Processing for Semiconductor Devices, Materials Resarch Society Proceedings, Vol.17, p.151, 1983.Google Scholar
[3] Breiland, W. G., Ho, P., Coltrin, M. E., J. Appl. Phys. 60, 1505 (1986); W. G. Breiland, M. E. Coltrin, P. Ho, J. Appl. Phys. 59, 3267 (1986); M. E. Coltrin, R. J. Kee, J. A. Miller, J. Electrochem Soc, 133, 1206 (1986).Google Scholar
[4] Matsumi, Y., Toyoda, S., Hayashi, T., Miyamura, M., Yoshikawa, H., Komiya, S., J. Appl. Phys. 60, 4102 (1986).Google Scholar
[5] Gottscho, R. A., Phys. Rev. A 36, 2233 (1987).Google Scholar
[6] Wiese, W. L., Smith, M. W., and Glennon, B. M., Atomic Transition Probabilities, NSRDS-NBS-4, U.S. Government Printing Office, 1966.Google Scholar
[7] Huber, K. P. and Herzberg, G., Molecular Spectra and Molecular Structure IV, Nostrand Reinhold, New York, 1979.Google Scholar
[8] Herzberg, G., Molecular Spectra and Molecular Structure III, Van Nostrand Reinhold, New York, 1966.Google Scholar
[9] Brehohl, H., Dubois, I., Houbrechts, Y., and Leclercq, H., J. Phys. B, 11, L137 (1978).Google Scholar
[10] Brehohl, H., Demoulin, Ph., Houbrechts, Y., Mélen, F., J. Phys. B, 14, 1771 (1981).Google Scholar
[11] Verma, R. D., Can. J. Phys., 42, 2345 (1964).Google Scholar
[12] Jeffries, J. B. and Copeland, R. A., to be published.Google Scholar
[13] Meijer, G., Ubachs, W., Meulen, J. J. ter, A Dymanus, Chem. Phys. Lett., 139, 603 (1987).Google Scholar