Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T02:42:39.707Z Has data issue: false hasContentIssue false

Quantitative approaches for characterising fibrillar protein nanostructures

Published online by Cambridge University Press:  01 February 2011

Tuomas P. J. Knowles
Affiliation:
[email protected] University of Cambridge Department of Chemistry, Cambridge, United Kingdom
Duncan A. White
Affiliation:
[email protected] University of Cambridge Department of Chemistry, Cambridge, Cambridgeshire, United Kingdom
Christopher M. Dobson
Affiliation:
[email protected] University of Cambridge Department of Chemistry, Cambridge, Cambridgeshire, United Kingdom
Mark E. Welland
Affiliation:
[email protected] University of Cambridge Nanoscience Centre, Cambridge, Cambridgeshire, United Kingdom
Get access

Abstract

Polypeptide sequences have an inherent tendency to self-assemble into filamentous nanostructures commonly known as amyloid fibrils. Such self-assembly is used in nature to generate a variety of functional materials ranging from protective coatings in bacteria to catalytic scaffolds in mammals. The aberrant self-assembly of misfolded peptides and proteins is also, however, implicated in a range of disease states including neurodegenerative conditions such as Alzheimer's and Parkinson's diseases. It is increasingly evident that the intrinsic material properties of these structures are crucial for understanding the thermodynamics and kinetics of the pathological deposition of proteins, particularly as the mechanical fragmentation of aggregates enhances the rate of protein deposition by exposing new fibril ends which can promote further growth. We discuss here recent advances in physical techniques that are able to characterise the hierarchical self-assembly of misfolded protein molecules and define their properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Dobson, C. M. (1999) Protein misfolding, evolution and disease. Trends Biochem. Sci. 24(9), 329332.Google Scholar
[2] Dobson, C. M. (2003) Protein folding and misfolding. Nature 426(6968), 884890.Google Scholar
[3] Smith, J. F. Knowles, T. P. J. Dobson, C. M. Macphee, C. E. and Welland, M. E. (2006) Characterization of the nanoscale properties of individual amyloid fibrils. Proc Natl Acad Sci U S A 103(43), 1580615811.Google Scholar
[4] Knowles, T. P. Fitzpatrick, A. W. Meehan, S. Mott, H. R. Vendruscolo, M. Dobson, C. M. and Welland, M. E. (2007) Role of intermolecular forces in defining material properties of protein nanofibrils. Science 318(5858), 19001903.Google Scholar
[5] Dong, M. D. Hovgaard, M. B. Mamdouh, W. Xu, S. L. Otzen, D. E. and Besenbacher, F. (2008) Afmbased force spectroscopy measurements of mature amyloid fibrils of the peptide glucagon Nanotechnology 19(38), 384013.Google Scholar
[6] Fowler, D. M. Koulov, A. V. Alory-Jost, C. Marks, M. S. Balch, W. E. and Kelly, J. W. (2006) Functional amyloid formation within mammalian tissue. PLoS Biol. 4(1), e6.Google Scholar
[7] Fowler, D. M. Koulov, A. V. Balch, W. E. and Kelly, J. W. (2007) Functional amyloid - from bacteria to humans. Trends Biochem. Sci. 32(5), 217224.Google Scholar
[8] Scheibel, T. Parthasarathy, R. Sawicki, G. Lin, X.-M., Jaeger, H. and Lindquist, S. L. (2003) Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc Natl Acad Sci U S A 100(8), 45274532.Google Scholar
[9] Reches, M. and Gazit, E. (2003) Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300(5619), 625627.Google Scholar
[10] Pilkington, S. M. Roberts, S. J. Meade, S. J. and Gerrard, J. A. (2010) Amyloid firils as a nanoscaffold for enzyme immobilization. Biotechnol Prog 26(1), 93100.Google Scholar
[11] Knowles, T. P. J. Oppenheim, T. W. Buell, A. K. Chirgadze, D. Y. and Welland, M. E. (2010) Nanostructured films from hierarchical self-assembly of amyloidogenic proteins. Nat Nanotechnol 5(3), 204207.Google Scholar
[12] Buehler, M. J. and Yung, Y. C. (2010) How protein materials balance strength, robustness, and adaptability Hfsp Journal 4(1), 2640.Google Scholar
[13] Buehler, M. J. (2010) Nanomaterials: Strength in numbers Nat Nano 5(3), 172174.Google Scholar
[14] Knowles, T. P. J. Waudby, C. A. Devlin, G. L. Cohen, S. I. A. Aguzzi, A. Vendruscolo, M. Terentjev, E. M., Welland, M. E. and Dobson, C. M. (2009) An analytical solution to the kinetics of breakable fibament assembly. Science 326 (5959), 15331537.Google Scholar
[15] Tanaka, M. Collins, S. R. Toyama, B. H. and Weissman, J. S. (2006) The physical basis of how prion conformations determine strain phenotypes. Nature 442(7102), 585589.Google Scholar
[16] Collins, S. R. Douglass, A. Vale, R. D. and Weissman, J. S. (2004) Mechanism of prion propagation: amyloid growth occurs by monomer addition. PLoS Biol 2(10), e321.Google Scholar
[17] Nowak, M. A. Krakauer, D. C. Klug, A. and May, R. M. (1998) Prion infection dynamics Integrative Biology.Google Scholar
[18] Chiti, F. and Dobson, C. M. (2006) Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333366.Google Scholar
[19] Paparcone, R. and Buehler, M. J. (2009) Microscale structural model of alzheimer a beta(1–40) amyloid fibril Applied Physics Letters 94(24), 243904.Google Scholar
[20] Rief, M. Gautel, M. Oesterhelt, F. Fernandez, J. M. and Gaub, H. E. (1997) Reversible unfolding of individual titin immunoglobulin domains by afm. Science 276(5315), 11091112.Google Scholar
[21] Carrion-Vazquez, M. Oberhauser, A. F. Fowler, S. B. Marszalek, P. E. Broedel, S. E. Clarke, J. and Fernandez, J. M. (1999) Mechanical and chemical unfolding of a single protein: a comparison. Proc Natl Acad Sci U S A 96(7), 36943699.Google Scholar
[22] Kellermayer, M. S. Z. Karsai, A. Benke, M. Soós, K. and Penke, B. (2008) Stepwise dynamics of epitaxially growing single amyloid fibrils. Proc Natl Acad Sci U S A 105(1), 141144.Google Scholar
[23] Vollrath, F. and Knight, D. P. (2001) Liquid crystalline spinning of spider silk Nature 410 (6828), 541548.Google Scholar
[24] Adamcik, J. Jung, J.-M., Flakowski, J. Rios, P. D. L. Dietler, G. and Mezzenga, R. (2010) Understanding amyloid aggregation by statistical analysis of atomic force microscopy images. Nat Nanotechnol.Google Scholar
[25] Paparcone, R. Keten, S. and Buehler, M. J. (2010) Atomistic simulation of nanomechanical properties of alzheimer's abeta(1-40) amyloid fibrils under compressive and tensile loading. J Biomech 43(6), 11961201.Google Scholar
[26] Goldsbury, C. Kistler, J. Aebi, U. Arvinte, T. and Cooper, G. J. (1999) Watching amyloid fibrils grow by time-lapse atomic force microscopy. J Mol Biol 285(1), 3339.Google Scholar
[27] Blackley, H. K. Sanders, G. H. Davies, M. C. Roberts, C. J. Tendler, S. J. and Wilkinson, M. J. (2000) In-situ atomic force microscopy study of beta-amyloid fibrillization. J Mol Biol 298(5), 833840.Google Scholar
[28] Khurana, R. Uversky, V. N. Nielsen, L. and Fink, A. L. (2001) Is Congo red an amyloid-specific dye? J. Biol. Chem. 276(25), 2271522721.Google Scholar
[29] Krebs, M. R. H. Bromley, E. H. C. and Donald, A. M. (2005) The binding of thioavin-T to amyloid fibrils: localisation and implications. J. Struct. Biol. 149(1), 3037.Google Scholar
[30] Knowles, T. P. J. Shu, W. Devlin, G. L. Meehan, S. Auer, S. Dobson, C. M. and Welland, M. E. (2007) Kinetics and thermodynamics of amyloid formation from direct measurements of uctuations in fibril mass. Proc. Natl. Acad. Sci. USA 104(24), 1001610021.Google Scholar
[31] Okuno, H. Mori, K. Jitsukawa, T. Inoue, H. and Chiba, S. (2006) Convenient method for monitoring Abeta aggregation by quartz-crystal microbalance. Chem. Biol. Drug. Des. 68(5), 273275.Google Scholar
[32] Myszka, D. G. (1997) Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Curr. Opin. Biotech. 8(1),5057.Google Scholar
[33] Kanazawa, K. K. and Gordon, J. G. (1985) Frequency of a quartz microbalance in contact with liquid. Anal. Chem. 57(8), 17701771.Google Scholar
[34] Kotarek, J. A. Johnson, K. C. and Moss, M. A. (2008) Quartz crystal microbalance analysis of growth kinetics for aggregation intermediates of the amyloid-beta protein. Anal. Biochem. 378(1), 1524.Google Scholar
[35] Buell, A. K. Tartaglia, G. G. Birkett, N. R. Waudby, C. A. Vendruscolo, M. Salvatella, X. Welland, M. E., Dobson, C. M. and Knowles, T. P. J. (2009) Position-dependent electrostatic protection against protein aggregation. Chembiochem 10(8), 13091312.Google Scholar
[36] White, D. A. Buell, A. K. Knowles, T. P. J. Welland, M. E. and Dobson, C. M. (2010) Protein aggregation in crowded environments. J Am Chem Soc 132(14), 51705175.Google Scholar
[37] Minton, A. P. (1983) The effect of volume occupancy upon the thermodynamic activity of proteins: some biochemical consequences. Mol Cell Biochem 55(2), 119140.Google Scholar
[38] Hovgaard, M. B. Dong, M. Otzen, D. E. and Besenbacher, F. (2007) Quartz crystal microbalance studies of multilayer glucagon fibrillation at the solid-liquid interface. Biophys. J. 93(6), 21622169.Google Scholar
[39] Jiménez, J. L. Nettleton, E. J. Bouchard, M. Robinson, C. V. Dobson, C. M. and Saibil, H. R. (2002) The protofilament structure of insulin amyloid fibrils. Proc Natl Acad Sci U S A 99(14), 91969201.Google Scholar