Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T12:58:28.675Z Has data issue: false hasContentIssue false

Quantifying the Order of Spontaneous Ripple Patterns on Ion-Irradiated Si(111)

Published online by Cambridge University Press:  26 February 2011

H. Bola George
Affiliation:
[email protected], Harvard University, Division of Engineering & Applied Sciences, 9 Oxford St., Cambridge, MA, 02138, United States, (617) 495-4469, (617) 496-4654
Ari-David Brown
Affiliation:
[email protected], Johns Hopkins University, Department of Materials Science & Engineering, United States
Matthew R. McGrath
Affiliation:
[email protected], Vanderbilt University, Physics Department, United States
Jonah D. Erlebacher
Affiliation:
[email protected], Johns Hopkins University, Department of Materials Science & Engineering, United States
Michael J. Aziz
Affiliation:
[email protected], Harvard University, Division of Engineering & Applied Sciences, United States
Get access

Abstract

Uniform keV ion irradiation causes a morphological instability known to result in the spontaneous formation of topographic ripple and dot patterns. The degree of order of these patterns, which has important implications for non-lithographic patterning applications, varies markedly with fabrication conditions. We investigate the influence of systematic variations of fabrication conditions, including current density, ion fluence and ion energy, on the degree of order of argon ion bombarded Si(111) surfaces. For quantifying order in sputter rippled topographic images, we develop an algorithm that evaluates the density of topological defects, such as ripple bifurcations and terminations, and suitably normalizes the result in order to present a scalar figure of merit: the normalized defect density. We discuss fabrication conditions that lead to extremely well ordered dot and ripple patterns upon irradiation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Haymann, P., Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences 248 (17), 2472 (1959).Google Scholar
2 Rusponi, S., Costantini, G., Boragno, C. et al. , Phys. Rev. Lett. 81 (13), 2735 (1998).Google Scholar
3 Rusponi, S., Costantini, G., Boragno, C. et al. , Phys. Rev. Lett. 81 (19), 4184 (1998).Google Scholar
4 Chan, W.-L., Pavenayotin, N., and Chason, E., Phys. Rev. B 69 (24), 245413 (2004).Google Scholar
5 Chason, E., Mayer, T.M., Kellerman, B.K. et al. , Phys. Rev. Lett. 72 (19), 3040 (1994).Google Scholar
6 Carter, G. and Vishnyakov, V., Phys. Rev. B 54 (24), 17647 (1996).Google Scholar
7 Erlebacher, J., Aziz, M.J., Chason, E. et al. , Phys. Rev. Lett. 82 (11), 2330 (1999).Google Scholar
8 Mayer, T.M., Chason, E., and Howard, A.J., J. Appl. Phys. 76, 1633 (1994).Google Scholar
9 Umbach, C. C., Headrick, R. L., and Chang, K. C., Phys. Rev. Lett. 87 (24), 246104 (2001).Google Scholar
10 Frost, F., Schindler, A., and Bigl, F., Phys. Rev. Lett. 85 (19), 4116 (2000).Google Scholar
11 Frost, F. and Rauschenbach, B., Appl. Phys. A 77 (1), 1 (2003).Google Scholar
12 Gago, R., Vazquez, L., Cuerno, R. et al. , Appl. Phys. Lett. 78 (21), 3316 (2001).Google Scholar
13 Cuenat, A. and Aziz, M.J., Mater. Res. Soc. Symp. Proc. 696, N2.8.1 (2002).Google Scholar
14 Ludwig, F., Eddy, C.R., Malis, O. et al. , Appl. Phys. Lett. 81 (15), 2770 (2002).Google Scholar
15 Qi, L.J., Li, W.Q., Yang, X.J. et al. , Chinese Physics Letters 22 (2), 431 (2005).Google Scholar
16 Qi, L.J., Li, L., Li, W.Q. et al. , Chinese Physics 14 (8), 1626 (2005).Google Scholar
17 Ziberi, B., Frost, F., Rauschenbach, B. et al. , Appl. Phys. Lett. 87 (3), 033113 (2005).Google Scholar
18 Facsko, S., Dekorsy, T., Koerdt, C. et al. , Science 285 (5433), 1551 (1999).Google Scholar
19 Brown, A.-D., George, H.B., Aziz, M.J. et al. , Mat. Res. Soc. Symp. Proc. R.7.8, 792 (2004).Google Scholar
20 Brown, A.-D., Erlebacher, J., Chan, W.-L. et al. , Phys. Rev. Lett. 95 (5), 056101 (2005).Google Scholar
21 Brown, A.-D. and Erlebacher, J., Phys. Rev. B 72, 075350 (2005).Google Scholar
22 Bobek, T., Facsko, S., Dekorsy, T. et al. , Nucl. Instrum. & Meth. B 178, 101 (2001).Google Scholar
23 Ziberi, B., Frost, F., Tartz, M. et al. , Thin Solid Films 459, 106 (2004).Google Scholar
24 Castro, M., Cuerno, R., Vazquez, L. et al. , Phys. Rev. Lett. 94 (1), 016102 (2005).Google Scholar
25 Cuenat, A., George, H.B., Chang, K.-C. et al. , Adv. Mat. 17, 2845 (2005).Google Scholar
26 Otsu, N., IEEE Transactions on Systems Man and Cybernetics 9 (1), 62 (1979).Google Scholar
27 Bradley, R.M. and Harper, J.M., J. Vac. Sci. Technol. A 6, 2390 (1988).Google Scholar