Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T04:29:53.619Z Has data issue: false hasContentIssue false

Pulsed Laser Deposition and In Situ Scanning Tunneling Microscopy of Pd clusters supported on alumina

Published online by Cambridge University Press:  25 July 2011

C.S. Casari
Affiliation:
Dipartimento di Energia and NEMAS – Center for NanoEngineered Materials and Surfaces,Politecnico di Milano, via Ponzio 34/3, I-20133 Milano, Italy Center for Nano Science and Technology of IIT@PoliMI, Via Pascoli 70/3 I-20133 Milano, Italy
S. Foglio
Affiliation:
Dipartimento di Energia and NEMAS – Center for NanoEngineered Materials and Surfaces,Politecnico di Milano, via Ponzio 34/3, I-20133 Milano, Italy
M. Corbetta
Affiliation:
Dipartimento di Energia and NEMAS – Center for NanoEngineered Materials and Surfaces,Politecnico di Milano, via Ponzio 34/3, I-20133 Milano, Italy
M. Passoni
Affiliation:
Dipartimento di Energia and NEMAS – Center for NanoEngineered Materials and Surfaces,Politecnico di Milano, via Ponzio 34/3, I-20133 Milano, Italy
C.E. Bottani
Affiliation:
Dipartimento di Energia and NEMAS – Center for NanoEngineered Materials and Surfaces,Politecnico di Milano, via Ponzio 34/3, I-20133 Milano, Italy Center for Nano Science and Technology of IIT@PoliMI, Via Pascoli 70/3 I-20133 Milano, Italy
A. Li Bassi
Affiliation:
Dipartimento di Energia and NEMAS – Center for NanoEngineered Materials and Surfaces,Politecnico di Milano, via Ponzio 34/3, I-20133 Milano, Italy Center for Nano Science and Technology of IIT@PoliMI, Via Pascoli 70/3 I-20133 Milano, Italy
Get access

Abstract

With the aim of addressing the material gap issue between model and real systems in heterogeneous catalysis, we exploited Pulsed Laser Deposition (PLD) to produce Pd clusters supported on ultrathin alumina films (Pd/Al2O3/NiAl(001) and Pd/Al2O3-x/HOPG). The structural properties have been investigated by in situ Scanning Tunneling Microscopy (STM) in ultra high vacuum (UHV). At first, Pd clusters were deposited by evaporation and by PLD on Al2O3 surfaces grown by thermal oxidation of NiAl(001). The system shows thermal stability up to 650 K. By PLD we deposited Pd clusters with a good size control obtained by varying the background gas pressure and the target-to-substrate distance. We then realized a

Pd/Al2O3-x/HOPG system where both Pd clusters and the alumina film are produced by PLD showing that, by exploiting the same deposition technique, it is possible to synthesize both a model system addressable by in situ STM and a thick film (∼100 μm) closer to realistic systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Freund, H.-J., Surface Science 601, 1438 (2007)Google Scholar
2. Besenbacher, F., Lauritsen, J.V., Wendt, S., Nano Today 2, 30 (2007);Google Scholar
3. Henry, C.R., Surf. Sci. Rep. 31, 235 (1998)Google Scholar
4. Stipe, B. C., Rezaei, M.A., Ho, W., Gao, S., Persson, M., Lundqvist, B.I., Phys. Rev. Lett. 78, 4410 (1997);Google Scholar
5. Rose, M.K., Borg, A., Dunphy, J.C., Mitsui, T., Ogletree, D.F., Salmeron, M., Surf. Sci. 547, 162 (2003)Google Scholar
6. Allmond, C.E., Oleshko, V.P., Howe, J.M., Fitz-Gerald, J.M., Appl. Phys. A 82, 675 (2006)Google Scholar
7. Pulsed Laser Deposition of Thin Films, Chrisey, D.B. and Hubler, G.K. (Eds), John Wiley & Sons, New York(1994)Google Scholar
8. Willmott, P.R., Huber, J.R., Rev. Mod. Phys. 72, 315 (2000)Google Scholar
9. Wood, R.F, Chen, K.R., Leboeuf, J.N., Puretzky, A.A., Geohegan, D.B., Phys. Rev. Lett. 79, 1571 (1997)Google Scholar
10. Geohegan, D.B., Puretzky, A.A., Duscher, G., and Pennycook, S.J. Appl. Phys. Lett. 72, 2987 (1998)Google Scholar
11. Cattaneo, D., Righetti, N., Casari, C.S., Li Bassi, A., Bottani, C.E. Applied Surface Science 253, 7917 (2007)Google Scholar
12. Cattaneo, D., Foglio, S., Casari, C.S., Li Bassi, A., Passoni, M., Bottani, C.E. Surface Science 601, 1892 (2007);Google Scholar
13. Bailini, A., Di Fonzo, F., Fusi, M., Casari, C.S., Li Bassi, A., Russo, V., Baserga, A., Bottani, C.E., Applied Surface Science 253, 8130 (2007)Google Scholar
14. Amoruso, S., Sambri, A., Vitiello, M., and Wang, X., Applied Surface Science 252, 4712 (2006)Google Scholar
15. Di Fonzo, F., Tonini, D., Li Bassi, A., Casari, C.S., Beghi, M.G., Bottani, C.E., Gastaldi, D., Vena, P., Contro, R., Applied Physics A 93, 765 (2008)Google Scholar
16. Gassmann, P., Franchy, R., Ibach, H., Surface Science 319, 95109 (1994)Google Scholar
17. Sauvage, F., Di Fonzo, F., Li Bassi, A., Casari, C.S., Russo, V., Divitini, G., Ducati, C., Bottani, C.E., Comte, P., Graetzel, M., NanoLetters 10, 2562 (2010)Google Scholar
18. Di Fonzo, F., Casari, C.S., Russo, V., Brunella, M.F., Li Bassi, A., and Bottani, C.E., Nanotechnology 20, 015604 (2009)Google Scholar
19. Fusi, M., Di Fonzo, F., Casari, C.S., Maccallini, E., Caruso, T., Agostino, R.G., Bottani, C.E., Li Bassi, A. Langmuir 27, 1935 (2011)Google Scholar
20. Casari, C.S., Foglio, S., Siviero, F., Li Bassi, A., Passoni, M., Bottani, C.E., Physical Review B 79, 195402 (2009)Google Scholar