Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T03:59:28.801Z Has data issue: false hasContentIssue false

Properties of the Magnetic Hydride YFe2H4 from First Principles Calculations

Published online by Cambridge University Press:  26 February 2011

D.J. Singh
Affiliation:
Center for Computational Materials Science, Naval Research Laboratory, Washington, DC 20375, U.S.A.
M. Gupta
Affiliation:
Institut des Sciences de Materiaux, Universite Paris-Sud, 91405, Orsay, France
Get access

Abstract

YFe2H4 is a ferromagnetic metal with magnetization higher than the Laves phase parent compound, YFe2. Here, the electronic and magnetic properties of YFe2H4 are studied using density functional calculations, in order to elucidate the reasons for this. The electronic structure of YFe2H4 differs from that of YFe2 both because of the lattice expansion upon hydriding and because of chemical interactions involving H. However, the main reason for the increased magnetization is found to be the lattice expansion.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bushow, K.H.J., in Handbook on the Physics and Chemistry of Rare Earths, ed. Gschneidner, K.A. Jr, Eyring, L., Vol. 6, pp 1111 (North Holland, 1984).Google Scholar
2. Buschow, K.H.J. and van Diepen, A.M., Solid State Commun. 19, 79 (1976).Google Scholar
3. Buschow, K.H.J. and Sherwood, R.C., J. Appl. Phys. 48, 4643 (1977).Google Scholar
4. Wiesinger, G. and Hilscher, G., in Topics in Applied Physics, ed. Schlapbach, L., Vol. 63, pp 285341 (Springer-Verlag, 1988).Google Scholar
5. Elsasser, C., Zhu, J., Louie, S.G., Fahnle, M. and Chan, C.T., J. Phys. Condens. Matter 10, 5081 (1988).Google Scholar
6. Papaconstantopoulos, D.A., Europhys. Lett. 15, 621 (1991).Google Scholar
7. Coehoorn, R., Phys. Rev. B 39, 13072 (1989).Google Scholar
8. Shoemaker, D.P. and Shoemaker, C.B., J. Less Common Met. 68, 43 (1979).Google Scholar
9. Kanematsu, K., J. Appl. Phys. 75, 7105 (1994).Google Scholar
10. Paul-Boncour, V., Guenee, L., Latroche, M., Escorne, M., Percheron-Guegan, A., Reichl, Ch. and Wiesinger, G., J. Alloys Compd. 253–254, 272 (1997).Google Scholar
11. Paul-Boncour, V. and Percheron-Guegan, A., J. Alloys Compd. 293–295, 237 (1999).Google Scholar
12. Paul-Boncour, V., Guenee, L., Latroche, M., Percheron-Guegan, A., Ouladdiaf, B. and Bouree-Vigneron, F., J. Solid State Chem. 142, 120 (1999).Google Scholar
13. Singh, D.J., Planewaves Pseudopotentials and the LAPW Method (Kluwer Academic, 1994).Google Scholar
14. Singh, D., Phys. Rev. B 43, 6388 (1991).Google Scholar
15. Didisheim, J.-J., Yvon, K., Fischer, P. and Tissot, P., Solid State Commun. 38, 637 (1981).Google Scholar
16. Mohn, P. and Schwarz, K., Physica 130B, 26 (1985).Google Scholar
17. Sabiryanov, R.F. and Jaswal, S.S., Phys. Rev. B 57, 7767 (1998).Google Scholar
18. As may be seen in the projected density of states, hybridization does result in some Fe d character in the majority spin bands above the Fermi level.Google Scholar
19. Hochst, H., Colavita, E. and Buschow, K.H.J., Phys. Rev. B 31, 6167 (1985).Google Scholar
20. Pajda, M., Ahuja, R., Johansson, B., Wills, J.M., Figiel, H., Pajda, A. and Eriksson, O., J. Phys. Condens. Matter 8, 3373 (1996).Google Scholar
21. Matar, S.F. and Paul-Boncour, V., C. R. Acad. Sci. Paris, Serie IIc, Chimie 3, 27 (2000).Google Scholar