Published online by Cambridge University Press: 10 February 2011
Mechanical attrition and mechanical alloying has been developed as a versatile alternative to other processing routes in preparing nanophase materials with a broad range of chemical composition and atomic structure. In this process, lattice defects are produced by “pumping” energy into initially single-crystalline powder particles of typically 50 μm particle diameter. This internal refining process with a reduction of the average grain size by a factor of 103 – 104 results from the creation and self-organization of small-angle and high-angle grain boundaries within the powder particles during the milling process. This microstructural evolution has been characterized by X-ray, neutron and electron scattering methods revealing the grain refinement and increase in internal stress. As a consequence, a change of the thermodynamic, mechanical and chemical properties of these materials has been observed with the properties of nanophase materials becoming controlled by the grain size distribution and the specific atomic structure and cohesive energy of the grain or interphase boundaries. An analysis of the thermal stability of attrited powder specimen gives the grain boundary energy of non-equilibrium and fully relaxed grain boundaries as well as their mobility. In summary, it is expected that the study of mechanical attrition processes in the future not only opens new processing routes for a variety of advanced nanophase materials but also improves the understanding of technologically relevant deformation processes, e.g. surface wear, on a nanoscopic level.