Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T03:11:03.926Z Has data issue: false hasContentIssue false

Properties of Liquid As: A First Principles Calculation

Published online by Cambridge University Press:  28 February 2011

X.-P. Li
Affiliation:
Department of Physics, State University of New York at Stony Brook, Stony Brook, NY 11794-3800
P.B. Allen
Affiliation:
Department of Physics, State University of New York at Stony Brook, Stony Brook, NY 11794-3800
R. Car
Affiliation:
Scuola Internazionale Superiore di Studi Avanzati, Strada Costiera 11, Trieste 34014, Italy
M. Parrinello
Affiliation:
Scuola Internazionale Superiore di Studi Avanzati, Strada Costiera 11, Trieste 34014, Italy
Get access

Abstract

The structural and electronic properties of liquid arsenic are calculated using density-functional quantum theory to calculate forces and trajectories of atoms. A semiconducting gap of 0.4 eV is found, and a coordination number of 2.8, close to the experimental values of 0.5 eV and 3. Our results support the existence of a Peierls-type distortion in liquid arsenic.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) For a review, see Greaves, G.N., Elliott, S.R. and Davis, E.A., Adv.Phys. 28, 49 (1979).CrossRefGoogle Scholar
(2)Bellissent, R., Bergman, C., Ceolin, R. and Gaspard, J.P., Phys. Rev. Lett. 59, 661 (1987).CrossRefGoogle Scholar
(3)Needs, Richard J., Martin, Richard M. and Nielsen, O.H., Phys. Rev. B 33, 3778 (1986).CrossRefGoogle Scholar
(4)Mattheiss, L.F., Hamann, D.R. and Weber, W., Phys. Rev. B34, 2190 (1986).CrossRefGoogle Scholar
5)Gaspard, J.P., Marinelli, F. and Pellegatti, A., Europhys. Lett. 3, 1095 (1987).CrossRefGoogle Scholar
(6)Car, R. and Parrinello, M., Phys. Rev. Lett. 55, 2471 (1985).CrossRefGoogle Scholar
(7)Hamann, D.R., Schluter, M. and Chiang, C., Phys. Rev. Lett. 43, 1444 (1979); G.B. Bachelet, D.R. Hamann and M. Schluter, Phys. Rev. B26, 4199 (1982).CrossRefGoogle Scholar
(8)Kohn, W. and Sham, L.J., Phys. Rev. 140, A1133 (1965).CrossRefGoogle Scholar
(9)Car, R. and Parrinello, M., Phys. Rev. Lett, 204 (1988); Proc. 18th Int. Conf. Phys. Semicond., Stockholm 1986, ed. 0. Engstrom (World Scientific Publ. Co., Singapore), p. 1165 (1987).Google Scholar
(10)Kleinman, Leonard and Bylander, D.M., Phys. Rev. Lett., 48, 1425 (1982).CrossRefGoogle Scholar
(11)Allan, Douglas C. and Teter, Michael P., Phys. Rev. Lett. 59, 1136 (1987).CrossRefGoogle Scholar
(12)Gunnarsson, O. and Jones, R.O., Phys. Rev. B31, 7588 (1985).CrossRefGoogle Scholar
(13)Bellissent, R., private communication.Google Scholar
(14)Etherington, G., Wright, A.C., J.T. Wenzel, Dore, J.C., Clarke, J.H. and Sinclair, R.N., J. of Non-cryst. Solids 48, 265 (1982).CrossRefGoogle Scholar