Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-02T23:43:18.211Z Has data issue: false hasContentIssue false

Properties of Electro-Optic Bi12SiO20 Thin Films Grown by Electron Cyclotron Resonance Plasma Sputtering

Published online by Cambridge University Press:  25 February 2011

Koji Nomura
Affiliation:
Central Research Laboratories, Matsushita Electric Industrial Company, Limited, Moriguchi, Osaka 570
Hisahito Ogawa
Affiliation:
Central Research Laboratories, Matsushita Electric Industrial Company, Limited, Moriguchi, Osaka 570
Get access

Abstract

Bi12SiO20 thin films have been prepared on glass and (0001) sapphire substrates by ECR plasma sputtering with a Bi and Si multitarget system. Polycrystalline thin films of δ-phase Bi12SiO20 have been obtained without any substrate heating. These films can be transformed into γ-phase Bi12SiO20 by heat treatment above 400°C in air and show a large photoconductivity in the range of 380–460 nm. Epitaxial thin films of γ-phase Bi12SiO20 have been obtained on (0001) sapphire substrates at the substrate temperature of 600δ during the sputtering process. Excellent quadratic electrooptic effects for these epitaxial thin films are successfully observed for the first time, and a spatial light modulator using this γ-phase Bi12SiO20 thin film has also been demonstrated. The details of the preparation, structure and some electrical and electrooptic properties of the Bi12SiO20 thin films are described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1)Hou, S.L. and Oliver, D.S., Appl. Phys. Lett. 18,325(1971).Google Scholar
2)Minemoto, T., Yoshimura, H., Suemoto, Y. and Fujita, S.,Jpn.J.Appl.Phys. 18,1727(1979).Google Scholar
3)Huignard, J.P. and Micheron, F.:Appl. Phys. Lett. 29,591(1976).Google Scholar
4)Huignard, J.P., Herriau, J.P., Aubourg, P. and Spitz, E., Opt. Lett. 4,21(1979).Google Scholar
5)Montchenault, G. Hamel de, Loiseaux, B. and Huignard, J.P.,Appl.Phys.Lett. 50,1794(1987).Google Scholar
6)Tanguay, A.R. Jr, Mroczkowski, S. and Barker, R.C.,J.Cryst.Growth,42,431(1977).Google Scholar
7)Nagao, Y. and Mimura, Y., IEEE J.Quantum Electron. QE–23,2152(1987).Google Scholar
8)Ono, T., Takahashi, C. and Matsuo, S.,Jpn.J.Appl. Phys. 23,L534(1984).Google Scholar
9)Adachi, H., Kawaguchi, T., Setsune, K., Ohji, K. and Wasa, K.,Appl.Phys.Lett. 42,867(1983).Google Scholar
10)Ballman, A.A., J. Cryst. Growth, 1,37(1967).Google Scholar
11)Gattow, G. and Schroder, H.,Z.Anorg.Allgem.Chem. 318,176(1962).Google Scholar
12)Mitsuyu, T., Wasa, K. and Hayakawa, S.,J.Electrochem.Soc. 123,94(1976).Google Scholar
13)Yamaguchi, T., Yoshida, K., Tada, K., Namba, H., Kuhara, Y., Ono, K., Tatsumi, M., Nishiwaki, Y. and Tsuno, K., Sumitomo Electric Technical Review, 20,181(1981).Google Scholar
14)NomuraH, K..Ogawa and Abe, A.,J. Electrochem.Soc. 134,922(1987).Google Scholar
15)Lipson, S.G. and Nisenson, P., Applied Optics, 13(1974)2052.Google Scholar