Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T18:43:53.104Z Has data issue: false hasContentIssue false

Properties of Chemically Modified Carbon Nanotubes

Published online by Cambridge University Press:  26 February 2011

Ryotaro Kumashiro
Affiliation:
[email protected], Tohoku University, aramaki aoba,, aoba-ku, sendai, miyagi, 980-8578, Japan
Hirotaka Ohashi
Affiliation:
[email protected], Tohoku University, Japan
Takeshi Akasaka
Affiliation:
[email protected], University of Tsukuba, Japan
Yutaka Maeda
Affiliation:
[email protected], Tokyo Gakugei University
Shinya Takaishi
Affiliation:
[email protected], Tohoku University, Japan
Masahiro Yamashita
Affiliation:
[email protected], Tohoku University, Japan
Shigeo Maruyama
Affiliation:
[email protected], University of Tokyo, Japan
Takeshi Izumida
Affiliation:
[email protected], Tohoku University, Japan
Rikizo Hatakeyama
Affiliation:
[email protected], Tohoku University, Japan
Katsumi Tanigaki
Affiliation:
[email protected], Tohoku University, CREST-JST, Japan
Get access

Abstract

Electric transport properties of chemically modificated carbon nanotubes (CNTs) using Si-containing organic molecules were investigated by means of the field effect transistors (FETs) technique. From the results of FET measurements, it was shown that p-type semiconducting CNTs can be converted to n-type ones by exohedral silylation. It is suggested that the electron carrier are doped into CNTs from the additional silyl groups, that is, the electronic properties of CNTs can be controlled by chemically modifications of outer surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Kong, J., Franklin, N. R., Zhou, C., Chapline, M. G., Peng, S., Cho, K. and Dai, H., Science, 287, 622 (2000).Google Scholar
[2] Bachtold, A., Hadley, P., Nakanishi, T. and Dekker, C., Science, 294, 1317 (2001).Google Scholar
[3] Derycke, V., Martel, R., Appenzeller, J. and Avouris, Ph., Nano Lett., 1, 453 (2001).Google Scholar
[4] Durkop, T., Getty, S. A., Cobas, E. and Fufrer, M. S., Nano Lett. 4, 35 (2004).Google Scholar
[5] Martel, R., Schmidt, T., Shea, H. R., Hertel, T. and Avouris, Ph., Appl. Phys. Lett., 73, 2447 (1998).Google Scholar
[6] Xiao, K., Liu, Y., Hu, P., Yu, G., Sun, Y. and Zhu, D., J. Am. Chem. Soc., 127, 8614 (2005).Google Scholar
[7] Zhou, C., Kong, J., Yenilmez, E. and Dai, H., Science, 290, 1552 (2000).Google Scholar
[8] Takenobu, T., Takano, T., Shiraishi, M., Murakami, Y., Ata, M., Kataura, H., Achiba, Y. and Iwasa, Y., Nature Materials, 2, 683 (2003).Google Scholar
[9] Chen, J., Hamon, M. A., Hu, H., Chen, Y., Rao, A. P., Eklund, P. C. and Haddon, R. C., Science, 282, 95 (1998).Google Scholar
[10] Mickelson, E. T., Huffman, C. B., Rinzler, A. G., Smalley, R. E., Hauge, R. H. and Margrave, J. L., Chem. Phys. Lett., 296, 188 (1998).Google Scholar
[11] Kataura, H., Kumazawa, Y., Maniwa, Y., Umezu, I., Suzuki, S., Ohtsuka, Y. and Achiba, Y., Synth. Met., 103, 2555 (1999).Google Scholar
[12] Maeda, Y., Rahman, G. M. Aminur, Wakahara, T., Kato, M., Okamura, M., Sato, S., Akasaka, T., Kobayashi, K. and Nagase, S., J. Org. Chem., 68, 6791 (2003).Google Scholar
[13] Akasaka, T., Ando, W., Kobayashi, K. and Nagase, S., J. Am. Chem. Soc., 115, 10366 (1993).Google Scholar
[14] Niyogi, S., Hamon, M. A., Hu, H., Zhao, B., Bhowmik, P., Sen, R., Itkis, M. E. and Haddon, R. C., Acc. Chem. Res., 35, 1105 (2002).Google Scholar