Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T08:06:39.694Z Has data issue: false hasContentIssue false

Properties and Crystallization of Amorphous Si1-xPx Alloy Thin Films

Published online by Cambridge University Press:  15 February 2011

J. R. A. Carisson
Affiliation:
Thin Film Division, Department of Physics and Measurement Technology, Linkoping University, S-581 83 Linkoping, Sweden
X.-H. Li*
Affiliation:
Thin Film Division, Department of Physics and Measurement Technology, Linkoping University, S-581 83 Linkoping, Sweden
L. D. Madsen
Affiliation:
Thin Film Division, Department of Physics and Measurement Technology, Linkoping University, S-581 83 Linkoping, Sweden
H. T. G. Hentzell
Affiliation:
Thin Film Division, Department of Physics and Measurement Technology, Linkoping University, S-581 83 Linkoping, Sweden
*
* Currently at: TMM, ABB STAL AB, S-612 82 FinspÅng, Sweden.
Get access

Abstract

The properties of amorphous Si1-xPx alloy thin films with 20–44 at.% P were studied. The results showed that these alloys have a wide bandgap Eo ranging from 1.5 to 2.15 eV, where the alloy films with 20 at.% P have the widest bandgap (1.75–1.82 eV) at annealing temperatures ≤600 °C. Conductivity measurements showed that two electron conduction processes mainly exist: hopping conduction in the band tail at low temperatures and extended-state conduction in the conduction band at high temperatures. Crystallization studies showed that the alloys are thermally stable and crystallize at temperatures between 850 and 1100 °C. A new phosphide, Si7P3 was formed by annealing the alloys with 30–44 at.% P at temperatures ≥950 °C depending on the P concentration.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Carlsson, J. R. A., Li, X.-H., Gong, S. F. and Hentzell, H. T. G., J. Appl. Phys. 74, 891 (1993).Google Scholar
2. Li, X.-H., Carlsson, J. R. A., Gong, S. F. and Hentzell, H. T. G., J. Appl. Phys. 75, 507 (1994).Google Scholar
3. Li, X.-H., Carlsson, J. R. A., Gong, S. F. and Hentzell, H. T. G., J. Appl. Phys. 77, 301 (1994).Google Scholar
4. Guha, S., Yang, J., Pawlikiewicz, A., Glatfelter, T., Ross, R. and Ovshinsky, S. R., Appl. Phys. Lett. 54, 2330 (1989).Google Scholar
5. Tanaka, K., Glow-Discharge Hydrogenated Amorphous Silicon (KTK, Tokyo, 1989) pp. 87.Google Scholar
6. Dvurechenskii, A. V., Ryazantsev, I. A., Smirnov, L. S., Klose, H. and Rieth, M., Phys. Stat. Sol. A 79, 83 (1983).Google Scholar
7. Dvurechenskii, A. V. and Ryazantsev, I. A., Phys. Stat. Sol. A 69, K117 (1982).Google Scholar
8. Davis, E. A. and Mott, N. F., Philos. Mag. 22, 903 (1970).Google Scholar
9. Bullot, J., Gauthier, M., Schmidt, M., Catherine, Y. and Zamouche, A., Phil. Mag. B 49, 2198 (1984).Google Scholar
10. Mott, N. F. and Davis, E. A., Electronic Processes in Non-Crystalline Materials, (Claredon Press, Oxford, 1979).Google Scholar
11. Li, X.-H., Carlsson, J. R. A., Gong, S. F. and Hentzell, H. T. G., J. Appl. Phys 77, 5179 (1994).Google Scholar
12. Desktop Microscopist, from Virtual Laboratories, Albuquerque, NM 87191–4266, USA.Google Scholar