Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T10:57:29.676Z Has data issue: false hasContentIssue false

Progress in High Conversion Efficiency a-Si/μc-Si Tandem Solar Cells and Modules

Published online by Cambridge University Press:  12 June 2012

Mitsuhiro Matsumoto
Affiliation:
Next-Generation Energy Device Development Center, Panasonic Corporation, 180, Ohmori Anpachi-Cho, Anpachi-Gun, Gifu 503-0195 Japan
Youichirou Aya
Affiliation:
Next-Generation Energy Device Development Center, Panasonic Corporation, 180, Ohmori Anpachi-Cho, Anpachi-Gun, Gifu 503-0195 Japan
Mitsuoki Hishida
Affiliation:
Next-Generation Energy Device Development Center, Panasonic Corporation, 180, Ohmori Anpachi-Cho, Anpachi-Gun, Gifu 503-0195 Japan
Shigeo Yata
Affiliation:
Next-Generation Energy Device Development Center, Panasonic Corporation, 180, Ohmori Anpachi-Cho, Anpachi-Gun, Gifu 503-0195 Japan
Wataru Shinohara
Affiliation:
Next-Generation Energy Device Development Center, Panasonic Corporation, 180, Ohmori Anpachi-Cho, Anpachi-Gun, Gifu 503-0195 Japan
Isao Yoshida
Affiliation:
Next-Generation Energy Device Development Center, Panasonic Corporation, 180, Ohmori Anpachi-Cho, Anpachi-Gun, Gifu 503-0195 Japan
Daiji Kanematsu
Affiliation:
Next-Generation Energy Device Development Center, Panasonic Corporation, 180, Ohmori Anpachi-Cho, Anpachi-Gun, Gifu 503-0195 Japan
Akira Terakawa
Affiliation:
Next-Generation Energy Device Development Center, Panasonic Corporation, 180, Ohmori Anpachi-Cho, Anpachi-Gun, Gifu 503-0195 Japan
Masahiro Iseki
Affiliation:
Next-Generation Energy Device Development Center, Panasonic Corporation, 180, Ohmori Anpachi-Cho, Anpachi-Gun, Gifu 503-0195 Japan
Makoto Tanaka
Affiliation:
Next-Generation Energy Device Development Center, Panasonic Corporation, 180, Ohmori Anpachi-Cho, Anpachi-Gun, Gifu 503-0195 Japan
Get access

Abstract

A fabrication technology for high-quality, device-grade microcrystalline silicon (μc-Si) thin film with a higher deposition rate has been required to reduce the production cost of amorphous silicon (a-Si)/μc-Si tandem modules. Localized Plasma Confinement CVD (LPC-CVD) has been proposed as one solution to this problem. It was found that this CVD is suitable for the deposition of high crystalline fractions and (220) orientation in the development of small-to-medium-size substrates. Since then, we have been developing high-rate deposition technology for production-size substrates by using the essence of LPC-CVD and evaluation techniques for μc-Si materials and plasma. A stabilized module efficiency of 11.1% was reported with a very high deposition rate on a production-size substrate. To improve conversion efficiency, we have been focusing on elemental technologies as well as high-rate deposition technology. Stabilized conversion efficiency of 12.2% for small-size cells (1 cm2) and stabilized module conversion efficiency of 10.7% for production-size substrates were achieved.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kuwano, Y.: Technical Digest of 1st International Photovoltaic Science and Engineering Conference , (1984, Kobe) 71.Google Scholar
Maruyama, E., Okamoto, S., Terakawa, A., Shinohara, W., Tanaka, M., and Kiyama, S., Sol. Energy Mater. Sol. Cells 74 (2002) 339.CrossRefGoogle Scholar
Meier, J., Dubail, S., uckiger, R. Fl., Fischer, D., Keppner, H., Shah, A., Proc. of 1st World Conf. Photovoltaic Energy Conversion , (1994, Hawaii), p. 409.Google Scholar
Guo, L., Kondo, M., Fukawa, M., Saitoh, K. and Matsuda, A., Jpn. J. Appl. Phys. 037 (1998) L1116.CrossRefGoogle Scholar
Kondo, M., Fukawa, M., Guo, L. and Matsuda, A., J. Non-Cryst. Solids 266269 (2000) 84.CrossRefGoogle Scholar
Matsumoto, M., Kawamoto, K., Mishima, T., Haku, H., Shima, M., Terakawa, A. and Tanaka, M.: Proc. 4th World Conf. Photovoltaic Energy Conversion (2006, Hawaii) 1580.Google Scholar
Aya, Y., Matsumoto, M., Murata, K., Ogasawara, S., Nakagawa, M., Terakawa, A. and Tanaka, M., Technical Digest 17th Photovoltaic Science and Engineering Conf . (2007, Fukuoka) 177.Google Scholar
Kunii, T., Murata, K., Matsumoto, M., Kawamoto, K., Kobayashi, Y., Aya, Y., Nakagawa, M., Terakawa, A. and Tanaka, M., Proc. 33rd IEEE Photovoltaic Science and Engineering Conf . (2008, San Diego) 259.Google Scholar
Katayama, H., Naruse, Y., Yoshida, I., Aya, Y., Terakawa, A. and Iseki, M., Technical Digest 21st Photovoltaic Science and Engineering Conf . (2011, Fukuoka) 4D-2P-14Google Scholar
Howling, A.A., Dorier, J.L., Hollenstein, C., Kroll, U., Finger, F., J. Vac. Sci. Technol. A 10 (1992) 1080.CrossRefGoogle Scholar
Kuroda, A., Aya, Y., Terakawa, A. and Tanaka, M., Extended Abstract of the 71st Autumn Meeting; The Japan Society of Applied Physics (2010, Nagasaki) 14p-ZB-5Google Scholar
Nakamura, N., Takahama, T., Isomura, M., Nishikuni, M., Yoshida, K., Tsuda, S., Nakano, S., Ohnishi, M. and Kuwano, Y., Jpn. J. of Appl. Phys., 28, (1989) 1762.CrossRefGoogle Scholar
Nishimoto, T., Takai, M., Kondo, M., and Matsuda, A., Proc. 28th IEEE PVSC Photovoltaic Science and Engineering Conf (2000, Anchorage) 876 Google Scholar
Smets, A. H. M., Kessels, W. M. M. and van de Sanden, M. C. M., Appl. Phys. Lett. 82 (2003) 1547.CrossRefGoogle Scholar
Smets, A. H. M. and van de Sanden, M. C. M., Phys. Rev. B 76 (2007) 073202.CrossRefGoogle Scholar
Smets, A. H. M., Matsui, T. and Kondo, M., Appl. Phys. Lett. 92 (2008) 033506.CrossRefGoogle Scholar
Smets, A. H. M., Matsui, T. and Kondo, M., J. Appl. Phys. 104 (2008) 034508.CrossRefGoogle Scholar
Sekimoto, T., Katayama, H., Murata, K., Matsumoto, M., Kitahara, A, Hishida, M., Aya, Y., Shinohara, W., Nakagawa, M., Terakawa, A., and Tanaka, M.: Proc. 35th IEEE Photovoltaic Science and Engineering Conf . (2010, Hawaii) 1147.Google Scholar
Smets, A.H.M., Matsui, T., Kondo, M. and van de Sanden, M.C.M. Proc. 34th IEEE Photovoltaic Science and Engineering Conf . (2009, Philadelphia) 721 Google Scholar
Shinohara, W., Aya, Y., Hishida, M., Kitahara, N., Nakagawa, M., Terakawa, A. and Tanaka, M., Proc. 25th European Solar Energy Conf . (2010, Valencia) 2735.Google Scholar
Aya, Y., Katayama, H., Matsumoto, M., Hishida, M., Shinohara, W., Yoshida, I., Kitahara, A., Yoneda, H., Terakawa, A. and Iseki, M., Proc. 37th IEEE Photovoltaic Science and Engineering Conf. (2011, Seattle) To be published.Google Scholar
Yata, S., Kanematsu, D., Kaneko, K., Shimizu, R., Kitahara, A., Hishida, M., Aya, Y., Shinohara, W., Yoneda, H., Terakawa, A., Iseki, M. and Tanaka, M., Technical Digest 21st Photovoltaic Science and Engineering Conf . (2011, Fukuoka) 2A-2O-01.Google Scholar
Kanematsu, D., Matsumoto, M., Yata, S., Aya, Y., Terakawa, A., Iseki, M., Proc. 2012 MRS Spring Meeting, (2012) in preparation.Google Scholar
Terakawa, A., Hishida, M., Yata, S., Shinohara, W., Kitahara, A., Yoneda, H., Aya, Y., Yoshida, I., Iseki, M. and Tanaka, M.: Proc. 26th European Solar Energy Conf. (2011) 3BO.4.2.Google Scholar