Published online by Cambridge University Press: 15 February 2011
Results of a program to improve the performance of Cd1−xZnxTe detectors by adjusting growth parameters to achieve low-strain, high purity low defect crystals, investigating surface effect phenomena and contacting methods, and establishing reproducible manufacturing methods are reviewed and discussed. Processing and fabrication methods were developed which are applicable throughout the composition range. Energy spectra for room temperature Cd1−xZnxTe detectors exhibit resolutions (FWHM) from 2.16 keV at 14 keV to 6.9 keV at 122 keV. An energy resolution of 910 eV at 5.9 keV was achieved at −25 C. Stable ohmic contacts and gamma ray detection for ZnTe are reported for the first time. Applications of Cd1−xZnxTe to nuclear medicine and X-ray fluorescence are discussed. New gamma ray imagers using Cd1-−ZnxTe detector arrays are described, and imaging data for a 32 × 32 monolithic array of 1 mm2 elements on a 42mm × 42mm substrate are presented.